
FieldView
Reference Manual

SOFTWARE RELEASE
VERSION 2023

11/7/2023

Tecplot, Inc.

Copyright 2023 Tecplot, Inc.
Revision 2023
All Rights Reserved
Printed in USA
First Printing November 2001

FieldView is a registered trademark of Tecplot, Inc.

Tecplot, Inc. reserves the right to make changes in specifications and other information contained in this publication without prior notice and the
reader should in all cases consult Tecplot, Inc. to determine whether any such changes have been made.

The terms and conditions governing the licensing of Tecplot, Inc. software consist solely of those set forth in the Tecplot, Inc. Binary License
Terms and Conditions set forth by Tecplot, Inc.. No representations or other affirmation of fact contained in this publication, including but not
limited to statements regarding capacity, response-time performance, suitability for use or performance of products described herein shall be
deemed to be a warranty of Tecplot, Inc.for any purpose, or give rise to any liability by Tecplot, Inc. whatsoever.

In no event shall Tecplot, Inc. be liable for any incidental, indirect, special or consequential damages whatsoever (including but not limited to lost
profits) arising out of or relating to this publication or the information contained in it, even if Tecplot, Inc. has been advised, knew or should have
known of the possibility of such damages.

The software programs described in this document are confidential information and proprietary products of Tecplot, Inc. or its licensors.

Reprise License Manager (RLM) v12.4, Copyright (C) 2006-2018, Reprise Software, Inc.
Copyright (C) 2006-2018, Reprise Software, Inc. All rights reserved.
RLM Build 12.4.2
Reprise License Manager is a registered trademark or trademark of Reprise Software, Inc. in the U.S. and/or other countries.
Copyright (c) 2000 - 2021, Lawrence Livermore National Security, LLC
All rights reserved.
Copyright © 2002 GraphicsMagick Group, an organization dedicated to making software imaging solutions freely available.
Copyright © 1999 E. I. du Pont de Nemours and Company
Copyright © 2000-2002, Ghostgum Software Pty Ltd. All rights reserved.
Copyright © 2000 Markus Friedl. All rights reserved.
Copyright © 1999 - 2003 Bob Friesenhahn <bfriesen@simple.dallas.tx.us>
FIG:Facility for Interactive Generation of figures Copyright © 1985-1988 by Supoj Sutanthavibul Parts Copyright © 1989-2000 by Brian V.
Smith Parts Copyright © 1991 by Paul King
The Graphics Interchange Format © is the Copyright property of CompuServe Incorporated. GIF(sm) is a Service Mark property of CompuServe
Incorporated.
Copyright © 1994 - 2000 by the Massachusetts Institute of Technology. All rights reserved.
Copyright © 1994-2000 TeCGraf, PUC-Rio. All rights reserved.
Copyright © 1991-2000 by Bell Labs Innovations for Lucent Technologies.
Copyright © 1998-2008 The OpenSSL Project. All rights reserved.
Copyright © 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved.
Copyright © 2002 Niels Provos <provos@citi.umich.edu> All rights reserved.
This product uses parts of the SFL package, Copyright © 1996-2000 iMatix Corporation 1991-2000 iMatix Corporation <http://
www.imatix.com>.
Copyright © 1995-2002 Jean-loup Gailly and Mark Adler
Copyright © 1993 University of Chicago
Copyright © 1993 Mississippi State University
Copyright © 1999 Serika Kurusugawa. All rights reserved.
Copyright © 1999-2000 Mizi Research Inc. All rights reserved.
Copyright © 2001, 2002 Turbolinux, Inc. Written by James Su.
Copyright © 2000 Turbolinux, Inc. Written by Justin Yu and Sean Chen.
Copyright © 2000 Ming-Che Chuang
Copyright © 2002 WU Yi, HancomLinux Inc.
Copyright © 2000 Ming-Che Chuang
Copyright © 2001, 2002 ThizLinux Laboratory Ltd. Written by Anthony Fok.
Copyright © 2003-2004 immodule for Qt Project. All rights reserved.
Copyright © 2003-2006 Ben van Klinken and the CLucene Team
Copyright © 2008 Nokia Corporation and/or its subsidiary(-ies)
Copyright © 2004, 2005 Daniel M. Duley
Copyright © 2005 Bjoern Bergstroem
Copyright © 2005 Roberto Raggi
Copyright © The Internet Society (2001). All Rights Reserved.
Copyright © 1991 by AT&T.
Copyright © 2000 Hans Petter Bieker. All rights reserved.

Copyright © 1996 Daniel Dardailler.
Copyright © 2002 USC/Information Sciences Institute
Copyright © 2005-2007 Matthias Kretz <kretz@kde.org>
Copyright © 1998 by Bjorn Reese <breese@imada.ou.dk>
Copyright © 2000-2007 Gerard Juyn (gerard@libmng.com)
Copyright © 2004, 2006-2008 Glenn Randers-Pehrson
Copyright © 1996, 1997 Andreas Dilger
Copyright © 1995, 1996 Guy Eric Schalnat, Group 42, Inc.
Copyright © 2002 Robert Osfield.
Copyright © 1998 Julian Smart, Robert Roebling [, ...]
Copyright © 1999-2007 Brian Paul All Rights Reserved.
Copyright © 2012 The FreeBSD Foundation. All rights reserved.
Copyright © 2003-2018 University of Illinois at Urbana-Champaign. All rights reserved.
Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
Copyright © 1989, 1991, 1993, 1994 The Regents of the University of California. All rights reserved.
Copyright © 2009-2012, 2016 Daniel Stone
Copyright © 2012 Ran Benita <ran234@gmail.com>
Copyright © 2010, 2012 Intel Corporation
Copyright © 2008, 2009 Dan Nicholson
Copyright © 2010 Francisco Jerez <currojerez@riseup.net>
Copyright © 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts.
Copyright © 2011 Joseph Adams <joeyadams3.14159@gmail.com>
Copyright 1996 by Joseph Moss
Copyright © Dmitry Golubev <lastguru@mail.ru>, 2003-2004
Copyright © 2004, Gregory Mokhin <mokhin@bog.msu.ru>
Copyright © 2006 Erdal Ronahi
Copyright © 1998-2007 Free Software Foundation, Inc.
Copyright © 2005, 2006, 2010 Free Software Foundation, Inc.
Copyright © 1991-2010, Thomas G. Lane, Guido Vollbeding.
This software is based in part on the work of the Independent JPEG Group.
Copyright © 1988-1997 Sam Leffler
Copyright © 1985, 1986, 1987, 1992 X Consortium
Copyright 1996-2002 by David Turner, Robert Wilhelm, and Werner Lemberg
Copyright © 2003 The XFree86 Project, Inc. All Rights Reserved
Copyright © 1992 by Oki Technosystems Laboratory, Inc.
Copyright © 1992 by Fuji Xerox Co., Ltd
Copyright © 1995-2009 International Business Machines Corporation and others
Copyright © 2001-2006 Bart Massey, Jamey Sharp, and Josh Triplett.
Copyright © 1985, 1987-1988, 1990, 1993, 1994, 1998 The Open Group

This distribution contains PDF3D software copyright Visual Technology Services Ltd., all rights reserved.
This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc., Scriptics Corporation, and other parties.
Development tools and related technology provided under license from
FieldView includes Open MPI, from the Open MPI Project (See README_Copyrights.txt)
Copyright © 2011-2017, Christopher C. Hulbert. All rights reserved.
FieldView includes the font Noto Sans CJK JP from the Google Noto Fonts (See README_Copyrights.txt)
Copyright © 2003-2017, Troy D. Hanson http://troydhanson.github.com/uthash/. All rights reserved.
VTK Reader: Copyright © 1993-2015 Ken Martin, Will Schroeder, Bill Lorensen. All rights reserved.
MAT-File Format © COPYRIGHT 1999-2017 by The MathWorks, Inc.
OSF, OSF/Motifª, and Motifª are registered trademarks of The Open Software Foundation, Inc.
OpenGL is a trademark of Silicon Graphics, Inc. in the United States and other countries.
IBM is a registered trademark of International Business Machines Corporation.
Silicon Graphics is a registered trademark of Silicon Graphics, Inc.
Sun Microsystems is a registered trademark of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T.
PostScript is a registered trademark of Adobe Systems, Inc.
FIDAP, FLUENT and RAMPANT are registered trademarks of Ansys, Inc.
Phoenics is a registered trademark of Cham, Limited.
STAR-CD is a trademark of Computational Dynamics Ltd.
FLOW-3D¨ is a registered trademark of Flow Science, Inc.
CFX and CFX-TASCflow are registered trademarks of ANSYS-CFX.
MATLAB is a registered trademark of The MathWorks, Inc.
Noto is a trademark of Google Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS. The Licensed Software is deemed to be commercial computer software as defined in FAR 12.212
and subject to restricted rights as defined in FAR Section 52.227-19 "Commercial Computer Software License", as applicable, and any successor
regulations. Any use, modification, reproduction release, performance, display or disclosure of the Licensed Software by the U.S. Government
shall be solely in accordance with the terms of theTecplot, Inc. Binary License Terms and Conditions.

THIS DOCUMENT AND ALL INFORMATION CONTAINED HEREIN, ALONG
WITH ALL FILE FORMATS, EXAMPLE DATA AND ONLINE
DOCUMENTATION, IS INTENDED FOR THE EXCLUSIVE USE OF END-USER
LICENSORS OF FieldView.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents iv

Index

Table of Contents

List of Figures .. xiii

Chapter 1
Data Files... 1

Overview on Reading Data in FieldView ... 4
GRID PROCESSING ... 4
Function Selection .. 5
Transient Data .. 6
PLOT3D & OVERFLOW-2 Auto-Detect Format 8
Read Boundary Data Only ... 9
Reading more than one Dataset at a time ... 11
Dataset Comparison for Multiple Datasets ... 11
Merged Transient Datasets .. 12
Appending Datasets to the same Server Process 12
Data Written On Different Systems .. 12
Support for Arbitrary Elements ... 13
FieldView Parallel Datasets ... 18

Direct Readers in FieldView .. 20
Working with the Data Input Menu ... 21
Reading Data Interactively with FieldView Parallel 21
AcuSolve Direct Reader ... 22
CGNS ... 25
CGNS Unstructured/Hybrid Reader ... 26
FIDAP ... 27
FLOW-3D® Animation Data ... 28
FLOW-3D® Restart Data ... 28
FLOW-3D® .. 28
ANSYS-Fluent CFF [Direct Reader] ... 30
FLUENT cas/dat Direct Reader ... 33
FLUENT Direct Reader .. 35
FLUENT Universal ... 36
FLUENT/UNS (and RAMPANT) ... 36
FV-UNS Data Input (Native FieldView Unstructured Format) 36
Ensight Reader .. 38
Tecplot 360 Reader .. 40
HAVOC .. 41
LS-DYNA d3plot Direct Reader .. 41
LS-DYNA .. 43
NPARC/WIND .. 44
OpenFOAM .. 46

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents v

Index

OVERFLOW-2 ... 48
PHOENICS - BFC Data ... 54
PHOENICS - non-BFC Data .. 54
PLOT3D ... 55
SC/Tetra ... 58
scFLOW ... 59
SCRYU ... 59
scSTREAM ... 59
 ... 60
Surface Sampled Data ... 61
STL ... 61
UH3D ... 62
ultraFluidX .. 63
VTK .. 67
WIND US .. 68
XDB Import ... 70

Partitioned File Parallel Reader (PFPR) .. 72
Important points and limitations ... 72
Description of Layout File Format .. 73
Simple Layout File example ... 74
Limitations: ... 74
Partition File Parallel Reader Overload .. 78

Exports to FieldView Formats ... 79
AcuSolve .. 79
CFD-ACE ... 79
CFX .. 79
COBALT ... 80
CONVERGETM ... 81
DROP3D .. 84
FENSAP ... 84
FIDAP ... 84
Fine/Turbo .. 85
FLUENT ... 85
Exporting Particle Trajectories ... 90
FUN3D ... 92
GASP ... 92
POLYFLOW ... 92
 ... 93
STAR-CCM+ .. 93
Tetrex ... 93
ThermoAnalytics .. 93

Exports to FieldView Parallel Compatible Formats 93
Standalone Translators to FieldView Formats .. 95

BANFF ... 95
CFD++ .. 95
CFX-TASCflow ... 95

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents vi

Index

COBALT60 ... 95
PowerFlow ... 95
FIRE ... 95
GLACIER ... 95
USM3D ... 96
VECTIS .. 96

User Defined Plugin Readers for FieldView .. 96
AVUS ... 96

User Defined Plugin Readers for FieldView Parallel 97
Single file multigrid parallel .. 97
Partitioned file parallel .. 97
Unsupported features for Parallel Data Readers 98

Chapter 2
Functions... 100

Function Specification Panel ... 100
Face Data and the Function Specification Panel 100
Face Data and the Function Selection Panel 101
Using the Functions Panel ... 102
Face Data and the Function Formula Specification Panel 103
Using the Function Formula Specification Panel 103
Frequently Asked Questions .. 105
Possible Issues .. 107
Differences between Datasets ... 107
Out of Range Handling ... 109

Chapter 3
Region Files .. 110

Introduction .. 110
Region Features ... 110
Region Subsetting .. 111
Converting Data into Cylindrical Coordinates 112
Region Hierarchy ... 113
Region Controls Panel ... 115
Region File Naming Convention .. 117
Transient FV-UNS and PLOT3D .. 117

Region File Version 2 Format .. 118
Omega Built-in Function ... 122

Region File Examples ... 123
Basic Coordinate Transform Example ... 123
Mirroring ... 124
Cylindrical Coordinate Example ... 125
Creating Smooth Radial Surfaces .. 126
Transforming Velocity Vectors ... 126
Adding Regions .. 128

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents vii

Index

Blade Row Example .. 129
Defining Machine and Zero Theta Axis .. 130
Adding Blade Rows .. 131
Creating the Region File .. 133
Rotational Duplication of Regions .. 136

Region File Version 1 Format .. 137

Chapter 4
FieldView Extension Language (FVX)... 142

Introduction .. 142
FVX Syntax ... 143

Chunks ... 143
Lexical Conventions ... 143
Types ... 143
Working with Tables ... 144
Variable Scope ... 146
Type Casting .. 146
Operators ... 146
Statements ... 147
Control Structures .. 148
Functions .. 151

General Function Library ... 154
Basic Functions .. 154
String Functions ... 156
Mathematical Functions ... 158
Standard I/O Functions .. 158
System Facilities Functions .. 162

CFD Open Post-Processing Functions ... 162
CFD Data I/O ... 163
Creation and Modification of Post-Processing Objects 175
FVX Show Min Max Annotation ... 201
 ... 202
FVX Legends ... 203
FVX Support to Return Object Handles ... 207
Geometric Color and Scalar Colormap Specification 209
Vector Options ... 218
Annotation .. 219
Quantify and Query .. 223
Surface to Surface Sampling for Dataset Comparison 233
Transient Data Handling .. 236
Graphing .. 240
GUI Functions .. 244
Other Functions .. 246
Dynamic Clipping ... 249
FVX View Controls ... 250

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents viii

Index

FVX Debugger ... 251
Access to FVX Programs from the Tools Menu 252
Python-Enabled FVX ... 253

Support for Tkinter ... 254
FVX Learning Tools ... 256

FVX Tutorial Scripts ... 256
FVX Templates .. 257
Guide FVX saved with Restarts ... 257

Chapter 5
Restart Files and Script Language.. 260

Restart Files Menu .. 261
File Naming Convention ... 262
Automatic Restart ... 262
Restart Flexibility .. 262
Restart saved on Exit from FieldView .. 263

Restart Files Operation ... 264
Complete Restart ... 265
Complete, Current Window... ... 265
Complete Restart, No Data Read .. 266
Current Dataset Restart ... 267
Multi-Window Layout... ... 268
Layout Restart Files ... 272
Preference Restart ... 274
Script Restart ... 274
Formula Restart ... 274
Data File Input .. 275
Computational Surface ... 275
Iso-Surface ... 275
Streamlines .. 276
Particle Paths ... 278
Annotation .. 278
View (World) ... 278
Colormap Specification .. 278
Surface Plot .. 279
Boundary Surface .. 279
Vortex Cores / Surface Flows .. 279
Coordinate Surface .. 279
2D Plots Restart ... 279
Point Probe Input ... 280
Presentation Render .. 280
Clip Groups .. 280

FieldView Script Language Commands .. 280
Sample Scripts .. 304

Changing the View in an Animation ... 305

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents ix

Index

Holding View (pausing) .. 305
Animating Streamlines During View Interpolation 305
Animating Streaklines For Transient Data 306
Integrating Multiple Surfaces .. 306
Integrating Multiple Functions .. 307
Automating the creation of a Sampled Dataset 307

Chapter 6
Animation .. 308

Introduction .. 308
Flipbook Animation .. 309

Building a Flipbook Animation .. 310
Control and Playback of Animations .. 311
Output Formats .. 311
Examples ... 313

Keyframe Animation .. 316
Keyframe Actions ... 317
Keyframe Animation Panel ... 320
Error Conditions ... 329
Perspective and Mouse Controls ... 329
Surface and Region Detach ... 331

Chapter 7
Printing and Saving Images... 333

Introduction .. 333
Printing and Saving Images .. 334
FieldView Pixel Resolution .. 337

Possible Problems ... 339
Error Conditions ... 340

Chapter 8
Advanced Numerical Functions.. 341

Vector Quantities ... 341
Unit Vectors .. 341
Surface Unit Normals ... 342
Create a Vector from a Scalar .. 342
Extract a Component of a Vector ... 343
Equal Length Vectors for Two Datasets ... 343
Non-Rotating Velocities using Rotating Quantities 344

Integral Quantities ... 345
Line Integrals .. 346
Volume Integrals .. 346
Integrated Force ... 348

Built-In CFD Functions .. 349

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents x

Index

Miscellaneous Quantities .. 350
Curve Lengths in Structured Geometries ... 350
Second Derivatives .. 350
Rotating Quantities ... 351

Chapter 9
Building FieldView Plugins.. 353

Adding User-Defined Functions .. 353
Adding User-Defined Data Readers .. 356

Enabling the Passing of Constants to GUI Buttons 358
Writing a User-Defined Reader .. 359
Transient User-Defined Reader ... 379
Support for Cartesian Grids ... 383

Using User-Defined Plugins with a FieldView Server 384
Frequently Asked Questions .. 386

Writing and using Parallel User-Defined Data Readers 387
Grid-Parallel Data Readers .. 387
Partitioned-File Parallel Data Readers ... 388
Features Unsupported in Parallel Data Readers 389

Appendix A Built-In Functions ... 391
Geometric Functions ... 391
Scalar Functions Available with PLOT3D Q Files 391

Vector Functions Available with PLOT3D Q Files 393

Appendix B PLOT3D Formats ... 394
Introduction .. 394

Face Data and PLOT3D Format .. 394
Grid XYZ Files ... 395
Solution Q Files ... 397

Function Files ... 399
Face Data and Function Files .. 400
PLOT3D ... 402
PLOT3D Constants .. 403
Using the PLOT3D Data File Input Panel .. 403
Grid File Input ... 406
Using the Grid File Input Panel .. 407
Function File and Function Name File Input 407
Merge Series File Selection ... 409

Appendix C Function File Name Format 411
File Naming Convention ... 411
File Format ... 411
Face Data and Function Name Files .. 411

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents xi

Index

Error Conditions ... 412

Appendix D Unstructured Grid Format 413
General Remarks on Unstructured Data Format 413

Introductory note .. 413
Supported Element Types .. 414
Standard 3D element types .. 415
Arbitrary Polyhedron Cells ... 417
Arbitrary Polygon Boundary Faces .. 420

FieldView Compliance for Unstructured Data 420
Binary Format .. 422

General Remarks on Binary Format .. 422
Split Binary Format ... 422
Grid File in Split Binary Format .. 422
Results File in Split Binary Format ... 432
Combined (Grid & Results) Binary Format 437

Unformatted (FORTRAN 77) Format .. 451
Split Unformatted (FORTRAN 77) Format 451
Grid File in Split Unformatted (FORTRAN 77) Format 451
Results File in Split Unformatted (FORTRAN 77) Format 459
Combined (Grid & Results) Unformatted (FORTRAN 77) Format ... 465

ASCII Format ... 476
Split ASCII Format ... 476
Grid File in Split ASCII Format ... 477
Results File in Split ASCII Format .. 485
Combined (Grid & Results) ASCII Format 490
Transient Data .. 503

Creating FV-UNS files with FORTRAN 77 and C for different OS 504
ASCII FV-UNS files .. 504
Binary FV-UNS files ... 505
UNFORMATTED FV-UNS files .. 505

Appendix E Colormap File Format .. 509
File Naming Convention .. 509

Limitations: ... 510

Appendix F FieldView Limits ... 512
Per Session ... 512
Per Dataset ... 512
Per Grid ... 513
By Object ... 513

Legends ... 513
Surfaces ... 513
Streamlines .. 514
Annotation .. 514

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents xii

Index

2D Plots .. 514
Arbitrary Polyhedra .. 514

Appendix G 2D Plot Format .. 515

Appendix H Structured Boundary Files 516
Transient PLOT3D .. 516
Face Data and Surface Normal Information .. 517
CFX-4 .. 517
NPARC/WIND and WIND US .. 517
Create Wall Bnd File ... 518
Create Exterior Bnd File .. 518
File Format .. 518
Face Data for PLOT3D Data ... 522
Face Data and Function Name Files ... 523

Appendix I Plain Text Export Format .. 524
Computational Surfaces .. 525
Coordinate Surfaces .. 525
Iso-Surfaces .. 526
Boundary Surfaces .. 527
Streamlines ... 528

Appendix J MAT-File Export ... 530

Appendix K CSV Export .. 531

Appendix L Particle Path Formats ... 532
ASCII ... 532
BINARY ... 536

BINARY PARTICLE SET Format Description 536
BINARY STREAKLINE Format Description 539

Appendix M FieldView Math Fonts .. 541

Appendix N NPARC/WIND Constants and Formulas 543

Tecplot, Inc. FieldView Release 2023
Reference Manual

List of Figures xiii

Index

List of Figures
 Figure 1: Function Subset and Time Step Selection Panels 6
 Figure 2: PLOT3D and OVERFLOW-2 Data Input panels 8
 Figure 3: PLOT3D Data Input Error message .. 9
 Figure 4: Read Boundary Data Only .. 10
 Figure 5: Arbitrary Element Handling ... 13
 Figure 6: Dataset comparison for Arbitrary Element cases 14
 Figure 7: Arb Poly interpolation improvements ... 15
 Figure 8: Streamline improvements resulting from Arb Poly Interpolation 15
 Figure 9: FieldView Parallel Operation ... 18
 Figure 10: Single File Parallel vs Partitioned File Parallel operation 19
 Figure 11: Data Input pulldown menu ... 20
 Figure 12: Running Local FieldView Parallel .. 21
 Figure 13: AcuSolve [Direct Reader] Panel .. 23
 Figure 14: Multi-phase AcuSolve simulation visualized in FieldView 25
 Figure 15: CGNS Unstructured/Hybrid Data Input Panel ... 26
 Figure 16: CGNS Unstructured/Hybrid File Browser .. 27
 Figure 17: ANSYS-Fluent CFF [Direct Reader] Data Input Panel 31
 Figure 18: ANSYS-Fluent CFF [Direct Reader] File Browser for .cas.h5 files 31
 Figure 19: ANSYS-Fluent CFF [Direct Reader] File Browser for .dat.h5 files 32
 Figure 20: FLUENT cas/dat [Direct Reader] Data Input Panel 33
 Figure 21: Fluent cas/dat File Browser for .cas files ... 34
 Figure 22: Fluent cas/dat File Browser for .dat files ... 34
 Figure 23: Ensight Data Input Panel ... 38
 Figure 24: Ensight File Browser for ENSIGHT Gold files ... 38
 Figure 25: Tecplot 360 Data Input Panel .. 40
 Figure 26: Tecplot 360 File Browser ... 40
 Figure 27: LS-DYNA d3plot [Direct Reader] Data Input Panel 42
 Figure 28: LS-DYNA d3plot [Direct Reader] File Browser .. 42
 Figure 29: LS-DYNA interpolation issue with Thresholding 43
 Figure 30: OVERFLOW-2 Direct Reader for FieldView .. 48
 Figure 31: PLOT3D Data Input ... 57
 Figure 32: SC/Tetra [Direct Reader] Data Input Panel ... 58
 Figure 33: SC/Tetra [Direct Reader] File Browser .. 58
 Figure 34: scSTREAM [Direct Reader] Data Input Panel ... 59
 Figure 35: scSTREAM [Direct Reader] File Browser .. 60
 Figure 36: STL [Direct Reader] Data Input Panel ... 61
 Figure 37: STL [Direct Reader] File Browser .. 62
 Figure 38: UH3D Reader port for WINDOWS ... 63
 Figure 39: ultraFluidX [Direct Reader] panel .. 64
 Figure 40: FieldView results read operation ... 64
 Figure 41: Function Subset Selection panel ... 65
 Figure 42: Time Step Selection panel .. 66

Tecplot, Inc. FieldView Release 2023
Reference Manual

List of Figures xiv

Index

 Figure 43: PLOT3D PFPR example for 8 partitions ... 75
 Figure 44: Reading a PLOT3D PFPR layout file .. 76
 Figure 45: Partition File Parallel Operation ... 78
 Figure 46: CONVERGE Internal Combustion Spray Modeling 81
 Figure 47: CONVERGE [FV-UNS Export] Data Input Panel 82
 Figure 48: CONVERGE [FV-UNS Export] File Browser ... 83
 Figure 49: Transient Set Confirmation .. 83
 Figure 50: Importing Spray Droplet data .. 84
 Figure 51: FLUENT Export Pull-down .. 86
 Figure 52: FLUENT Export Panel ... 87
 Figure 53: FLUENT Export File Browser .. 88
 Figure 54: FLUENT Execute Command GUI ... 89
 Figure 55: Export Particle Data Panel .. 90
 Figure 56: Export Particle Data Panel .. 91
 Figure 57: Save File Panel ... 91
 Figure 58: Function Specification Panel ... 101
 Figure 59: Function Selection Panel ... 102
 Figure 60: Function Formula Specification Panel ... 104
 Figure 61: Function Operations .. 105
 Figure 62: Region Hierarchy Schematic ... 113
 Figure 63: Transformed Region Hierarchy Schematic .. 114
 Figure 64: Region Controls Panel .. 115
 Figure 65: Region Names Panel .. 115
 Figure 66: Region Mirror and Rotate Parameters .. 116
 Figure 67: Transforming Datasets in Cartesian Coordinates 124
 Figure 68: Mirror Offset Problem .. 124
 Figure 69: Mirror Offset Correction ... 125
 Figure 70: Transforming Data into Cylindrical Coordinates 125
 Figure 71: Jagged Radial Surface .. 126
 Figure 72: Smooth Radial Surface ... 126
 Figure 73: Tangential phase-1_velocity component on R surface 127
 Figure 74: Radial phase-2_velocity component on theta surface 127
 Figure 75: Region Definitions ... 129
 Figure 76: Blade Row ... 129
 Figure 77: Machine Axis Defined in X-Direction ... 130
 Figure 78: Zero Theta Surface ... 130
 Figure 79: Period Definition .. 131
 Figure 80: Blade Row Definition ... 132
 Figure 81: Wheel Speed ... 132
 Figure 82: Turbo Region Example .. 134
 Figure 83: Transformed Velocity Magnitude on the Blades 135
 Figure 84: Displaying Omega ... 135
 Figure 85: Copying Regions ... 136
 Figure 86: Region Example 2 ... 137
 Figure 87: FVX Example: Working with particle path data 198
 Figure 88: FVX Example: Select by particle diameter .. 198

Tecplot, Inc. FieldView Release 2023
Reference Manual

List of Figures xv

Index

 Figure 89: FVX Example: Select only recirculating trajectories 199
 Figure 90: FVX Example: Modify path display type .. 199
 Figure 91: Geometric Color Specification ... 210
 Figure 92: FVX Example: Controlling local scalar range .. 216
 Figure 93: FVX Example: Controlling local scalar range .. 217
 Figure 94: FVX Example: Controlling local scalar range .. 218
 Figure 95: Legacy Font illustration ... 221
 Figure 96: FVX Example: Text placement .. 222
 Figure 97: FVX Example: Drawing arrows ... 223
 Figure 98: Surface to Surface Sampling for Dataset Comparison 233
 Figure 99: Python-Enabled FVX Scheme ... 253
 Figure 100: Custom GUI panel showing some Tkinter widget examples 255
 Figure 101: Save/Open Restart menu options ... 261
 Figure 102: Restart File Panel .. 264
 Figure 103: Complete Restarts for some Tutorial Datasets 266
 Figure 104: Two datasets in a single window ... 269
 Figure 105: Applying a Multi-Window Layout Restart ... 270
 Figure 106: Layout Replace Warning ... 270
 Figure 107: Number of Datasets equals Number of Windows 271
 Figure 108: Number of Datasets greater than Number of Windows 271
 Figure 109: Number of Datasets less than Number of Windows 272
 Figure 110: Script View Controls and matching GUI actions 282
 Figure 111: Summary of Image Background SCRIPT command 284
 Figure 112: Interactive Dataset Mirror Copy ... 286
 Figure 113: Interactive Dataset Translate Copy ... 287
 Figure 114: Interactive Dataset Rotational Copy .. 287
 Figure 115: Tools Pull-Down Menu .. 309
 Figure 116: Flipbook Size Warning Panel .. 310
 Figure 117: Flipbook Controls Panel .. 311
 Figure 118: Flipbook File Save Panel ... 312
 Figure 119: Surface Sweep Extent and Step Control ... 313
 Figure 120: Streamline Build Control .. 314
 Figure 121: Transient Data Controls Panel in Flipbook Build Mode 315
 Figure 122: Dataset Control Sweep ... 315
 Figure 123: Keyframe Animation Panel .. 320
 Figure 124: Keyframe Animation Panel Create Action ... 321
 Figure 125: Keyframe Track Selection Panel ... 323
 Figure 126: Keyframe Value Specification Panel ... 324
 Figure 127: Keyframe Time Line Track Selection Panel .. 325
 Figure 128: Keyframe Time Line Display ... 326
 Figure 129: Keyframe Animation Perspective Warning ... 327
 Figure 130: Keyframe Delete Track Confirmation .. 328
 Figure 131: World/Dataset/Region/Surface Multi-Transform 330
 Figure 132: Toggle Multi-Transform Icons .. 330
 Figure 133: Light Multi-Transform .. 331
 Figure 134: Light Toggle Multi-Transform .. 331

Tecplot, Inc. FieldView Release 2023
Reference Manual

List of Figures xvi

Index

 Figure 135: Save images to file .. 334
 Figure 136: Saving a Multi-Window Image to File .. 335
 Figure 137: Postscript Options panel ... 336
 Figure 138: Error message when direct printing is not configured 337
 Figure 139: Rotating (left) and Non-Rotating (right) Vector Fields 345
 Figure 140: Q criterion feature detection .. 349
 Figure 141: PLOT3D Data Input Panel ... 402
 Figure 142: Grid File Input Panel .. 406
 Figure 143: Function Name Input Panel ... 408
 Figure 144: Function Name Warning .. 408
 Figure 145: Function Name Mismatch Panel ... 409
 Figure 146: Merge Series File Selection .. 410
 Figure 147: Face/Node numbering forTetrahedron Cell type 415
 Figure 148: Face/Node numbering for Pyramid Cell type ... 416
 Figure 149: Face/Node numbering for Prism Cell type ... 416
 Figure 150: Face/Node numbering for Hexahedron Cell Type 416
 Figure 151: Overview of Arbitrary Polyhedron Cell type ... 417
 Figure 152: Hex Cell with Trimmed Face and Center Value 419
 Figure 153: Hex Cell with Hanging Node, No Center Value 419
 Figure 154: Surface Normal Clockness .. 421
 Figure 155: Example Unstructured Dataset ... 502
 Figure 156: Unstructured Data Input Panel .. 503
 Figure 157: Right-handed IJK system .. 521

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 1

Table of ContentsIndex

Chapter 1

Data Files

Datasets can be read into FieldView in the following ways:

1. Using a built-in reader.

2. Exporting from a solver program to a FieldView compatible format such as PLOT3D or the Field-
View Unstructured File Format, and then using one of the built-in FieldView readers.

3. Using a stand-alone translator, supplied by Tecplot Inc. or another commercial solver company, to
convert data files to a FieldView compatible format.

4. Using a User Defined FieldView Plugin Reader.

Note: Information on commercial solvers, known problems and changes or updates to
Plugin Toolkit Readers will be kept up to date on the Customer Support Section of the
Tecplot Inc. web page. See www.tecplot.com/en/products/fieldview-solver-interfaces
for the latest information on all changes and up to date information on reading data into Fiel-
dView.

Solver Company Method

AcuSolve Altair Export to FV-UNS

AcuSolve Direct Reader Altair Direct Plugin Toolkit
Reader

AVUS Government Version of COBALT60 Standalone Translator

BANFF Reaction Engineering Export to PLOT3D

CFD++ Metacomp Technology Standalone Translator
to FV-UNS

CFD-ACE ESI Group Export to PLOT3D

CFX ANSYS Export to FV-UNS

www.teclot.com/en/products/fieldview-solver-interfaces

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 2

Table of ContentsIndex

CFX-TASCflow ANSYS Standalone Translator
to PLOT3D

CGNS Unstructured/Hybrid
Reader

Direct Plugin Toolkit
Reader

COBALT COBALT CFD Export to FV-UNS

COBALT60 Air Force Research Lab Standalone Translator
to FV-UNS

CONVERGETM Convergent Science, Inc. Export to FV-UNS

DROP3D ANSYS Export to FV-UNS

FENSAP ANSYS Export to FV-UNS

FIDAP ANSYS Direct Reader

Fine/Turbo Numeca Export to PLOT3D

FIRE AVL Standalone Translator
to FV-UNS

FLOW-3D® Animation Data Flow Science Direct Plugin Toolkit
Reader

FLOW-3D® Restart Data Flow Science Direct Plugin Toolkit
Reader

FLOW-3D® Flow Science Legacy Direct Reader

ANSYS-Fluent CFF [Direct
Reader] (current version)

ANSYS Direct Plugin Toolkit
Reader

FLUENT cas/dat Direct
Reader (current version)

ANSYS Direct Plugin Toolkit
Reader

FLUENT (current version) ANSYS Export to FV-UNS

FLUENT Universal (version
4.2 and below)

ANSYS Universal Files

FLUENT/UNS (and
RAMPANT)

ANSYS FieldView Case and
Data files

FrontFLOW Export to FV-UNS

FUN3D NASA Export to FV-UNS, VTK,
CGNS or Tecplot Binary
format

GASP Aerosoft Export to PLOT3D

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 3

Table of ContentsIndex

GLACIER Reaction Engineering Standalone Translator
to PLOT3D

HAVOC Corvid Technologies Direct Reader

LS-DYNA LSTC Direct Plugin Toolkit
Reader

NPARC/WIND NPARC Alliance Direct Reader

OpenFOAM ESI Direct Reader

OVERFLOW-2 NASA Direct Reader

PHOENICS - BFC Data CHAM Direct Reader

PHOENICS - non-BFC Data CHAM Direct Reader

PLOT3D NASA Direct Reader

POLYFLOW ANSYS Export to FV-UNS

PowerFlow EXA Export to FV-UNS

Pratt Pratt Whitney Direct Reader

RavenCFD Corvid Technologies Export to FV-UNS

SC/Tetra Software Cradle Co., Ltd. Direct Reader

scFLOW Software Cradle Co., Ltd. Direct Reader

SCRYU Software Cradle Co., Ltd. Direct Reader

scSTREAM Software Cradle Co., Ltd. Direct Reader

STAR-CCM+ CD-adapco Export to FV-UNS

STL Stereolithographic CAD Direct Reader

Tetrex Tetra Research Export to FV-UNS

ThermoAnalytics ThermoAnalytics Export to FV-UNS

UH3D Mindware Direct Reader

ultraFluidX Altair Direct Reader

USM3D NASA Export to FV-UNS

VECTIS Ricardo Export to FV-UNS

VTK Kitware Direct Reader

WIND US NPARC Alliance Direct Reader

XDB Import Tecplot Inc. Export from FV

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 4

Table of ContentsIndex

Overview on Reading Data in FieldView

GRID PROCESSING
The GRID PROCESSING section on the Data Input panels allows users to interactively balance per-
formance versus read time and memory. Settings can be easily changed, depending on usage, to
maximize productivity.

When FieldView reads data, it performs grid processing after reading the grid. Grid processing
increases FieldView’s speed in such operations as creating and sweeping Coordinate Surfaces, com-
puting accurate streamlines, and Dataset Sampling. The costs of grid processing are read time and
memory. Previous versions of FieldView required setting environment variables to balance perfor-
mance versus read time and memory. For a full list of operations benefiting from this initial grid pro-
cessing, please refer to page 25 of the FieldView User’s Guide.

Grid Processing setting guidelines:
 - If you don’t know what setting to use, try “Balanced” (the default value)
 - If your data takes a long time to read or if you’re going to read many time steps, try “Less”
 - If some operations are too slow (see the list of operations impacted by grid processing on
page 25 of the FieldView User’s Guide), try “More”
 - The recommended Grid Processing option for performing Surface Sampling is “Less”

GRID PROCESSING is shown on the PLOT3D and OVERFLOW-2 panels in Figure 2 and the FV-
UNS panel in Figure 4. The slider defaults to a "Balanced" position between faster data input using
less memory and faster performance using more memory. If you wish to post-process your data using
many Coordinate Surfaces or streamlines, or if you’re going to use Dataset Sampling for comparing
results, setting the slider to "More" will improve FieldView’s performance. If performance of these fea-
tures is less critical, setting the slider to "Less" will minimize read time and memory.

This Grid Processing setting is saved in, and read from, the Data Input restart file or FVX.

Exceptions

The presence of the following environment variables will disable Grid Processing controls on the Data
Input Panel, and override the "grid_processing" settings in Data Input (.dat) restarts and FVX scripts
for the entire FieldView session:

FV_PROBE_PERFORMANCE
FV_PROBE_SAVE_MEM

These environment variables (maintained for backward compatibility) offer another way of setting the
Grid Processing level, but for the entire FieldView session. For more on these environment variables,
please refer to the Balance Between Memory Usage and Performance section of the FieldView
User’s Guide.

When any one of these environment variables is set, the Data Input Grid Processing GUI will display a
field explaining why it is disabled, for example:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 5

Table of ContentsIndex

"Grid Processing controls disabled because FV_PROBE_PERFORMANCE is set".

This message will also be printed to the console.

If FV_PROBE_SAVE_MEM is set, Grid Processing is set to Less, as the goal of this environment vari-
able is to use as little memory as possible during the read phase.

If FV_PROBE_PERFORMANCE is set, Grid Processing is set to Balanced on the FieldView interface,
but this setting is actually ignored, with precedence given to FV_PROBE_PERFORMANCE.

There are certain conditions detected during the read such that Grid Processing will be ignored:

A Grid DataGuideTM file (.fvpre) was found and used.
In this case, the grid setting used is the same as the one used at the time of the generation of

the DataGuideTM file.
The message printed to the console is:
The Grid Processing setting was ignored because a DataGuide file was

found and used.

The dataset being read is Cartesian.
In this case, grid processing is not needed.
The message printed to the console is:
The dataset is Cartesian.
Grid Processing is not needed for Cartesian.

The grid file is a duplicate of a file read earlier.
In this case, the grid setting used is the same as the one used before.
The message printed to the console is:
The grid file is a duplicate of an earlier grid file.
The Grid Processing setting was inherited from the earlier grid file.

Function Selection
Reading results data in Replace or Append mode using most readers will automatically bring up the
Function Subset Selection panel containing a list of the variable names from the results file.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 6

Table of ContentsIndex

All Function Names will be initially selected (highlighted). Clicking on a selected Function Name will
deselect (unhighlight) it and vice versa.

Vector Function Selection
Vector functions are indicated on the Function Subset Selection panel by a triplet of scalar variable
names, the first of which has a “;”, followed by the vector name (“Velocity” in the panel shown in Figure
1). Selecting any of the three consecutive variables that define a vector function will automatically
select the other two variables. Similarly, deselecting a variable that belongs to a vector function will
deselect all three lines that belong to the vector function. In the example panel shown in Figure 1,
deselecting “Velocity_1” will also deselect “Velocity_0 ; "Velocity” and “Velocity_2”, since they form a
vector triplet.

Transient Data
For a transient dataset given as a series of files, FieldView will prompt you to read the whole series of
files and treat them as a transient dataset.

A dataset will automatically be recognized as transient as long as a particular file naming convention is
used. The file naming convention embeds the integer time step number (but not the solution time) in
the filename. This is represented as ##### below. Note that you should use as many digits as
required to represent your time steps. There is no requirement that five be used. FieldView looks for
the embedded time step value (#####) to the left of the first ‘dot’ (.), if there is one in the file name,
otherwise it will search from the right. The required format can be one of either:

 Figure 1 Function Subset and Time Step Selection Panels

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 7

Table of ContentsIndex

prefix#####.extension
prefix.#####

Example: pipe04020.extension, pipe04021.extension, …, pipe04073.extension
The actual extension used is not important.

Note: Only single byte numbers in filenames will be recognized as time steps in a transient
series.

For the readers that produce a single file containing transient data (AcuSolve, OpenFOAM, FLOW-
3D® and FIDAP), FieldView will present you with the Time Step Selection panel (see Figure 1, right)
when the data is read. This will show you the time steps found in the file(s) and allow you to choose
which one you wish to initially read into memory. By default, FieldView selects the last time step to
read in. You will have to explicitly choose a different time step if that is desired.

When turned on, the 'Read as Steady State' toggle button allows the selection of a specific time step of
a multiple time step per file dataset.

This capability is particularly of interest for quickly animating particles computed for a transient dataset
but with a fixed geometry over time. This can be done by:

• Reading the dataset with the “Read as Steady State” option ON.
• Importing a STREAKLINE (not PARTICLE SET) format Particle Path file, with the Import button

from the Particle Paths panel.
• Setting the Display Type to one that is compatible with animations, such as Growing, Spheres, Dots

or Polyspheres.
• Using the Animate button on the Particle Paths panel.

Since only particles will be updated, it will be many times faster than a full transient animation, in which
the volume data would be read and updated at each step.

The transient panel will be disabled and transient restrictions on particle path display options will be
lifted. The Particle Path Animate button will also be enabled in this mode.

Note that in order for time step or solution time information to be available in a FieldView session (for
example, to be included in an annotation using the escape sequence %%T or %%N), the dataset
needs to be read as transient with the 'Read as Steady State' option turned off.

For all transient data, any time step can be accessed through the Transient Data Controls panel (see
Chapter 14 of Working with FieldView for more information).

Changing of time step for a transient dataset will not cause all grid and results files to be re-read. Only
the file or files containing the results of the current dataset will be re-read when the time step number is
changed. The transient sweep reading of grid and results files (PLOT3D, FV-UNS-split) is optimized

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 8

Table of ContentsIndex

so that only the files that need to be changed for the new time step will be read. An invariant grid for
the current dataset and all files for other datasets will remain in memory.

PLOT3D & OVERFLOW-2 Auto-Detect Format
PLOT3D and OVERFLOW-2 data files can be saved using different file formats and attributes. A pre-
vious limitation of the FieldView data input panels for both types of data was that the file formats and
attributes needed to be explicitly and correctly set before the file could be read. By default, FieldView
will attempt to automatically detect the values for the FILE FORMAT, COORDS and DATA FORMAT.
You still have the option to disable this default behavior by turning the Auto-Detect Format option
OFF - in this case, explicit setting of the file format and attributes will be required.

 Figure 2 PLOT3D and OVERFLOW-2 Data Input panels

Auto-Detect Format is on by default

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 9

Table of ContentsIndex

If FieldView is unable to correctly detect the file format, the Auto-Detect Format button will be turned
off, and the following pop-up message will appear:

Note that if Auto-Detect Format switch has been turned OFF, it will remain OFF unless you turn it
back ON - it does not get reset back to the original default during the session.

Auto-Detect can only be used interactively or with FVX Data Input. The syntax for the FVX read_-
dataset command is:

auto_detect = ’on’
or

auto_detect = ’off’

Auto-Detect is NOT read or written to the data file restart.

Auto-Detect is enabled whether using Direct or Server, and supports non-parallel servers, parallel
servers, and partitioned-file parallel (PFPR).

Read Boundary Data Only
Often it is useful to review only the boundary surfaces for a dataset. By limiting the dataset read oper-
ation to read in just the boundary data, a significant reduction in the time required to read can be real-
ized. Reading of boundary data only is available for all unstructured data readers, including user-
defined (toolkit plugin) unstructured data readers.

If an unstructured data reader always has boundary data without any volume data, such as XDB
Import, or STL [Direct Reader], then Read Boundary Data Only is always enabled and the check but-
ton is grayed out.

The time savings associated with Read Boundary Data Only will depend on the ratio of boundary to
volume data, and will typically be in the range of 15x to 20x faster than reading the entire volume data
for a given dataset.

Read Boundary Data Only is enabled by turning on the check button in the Data Input panel (see Fig-
ure 4). This setting is off by default. Read Boundary Data Only is fully compatible with FieldView Par-
allel. Partitioned File Parallel formats are also fully supported. This feature will also work correctly to
examine extruded 2D boundary data, created using the FV_2D_TO_3D environment variable.

 Figure 3 PLOT3D Data Input Error message

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 10

Table of ContentsIndex

Recognize that all surface and rake types which rely on volume data cannot be created following a
read boundary only data option.

Complete support has been provided for RESTARTS. However, it is important to keep in mind that it
will not be possible to create any rakes or surfaces which need volume data. So, consider the case
where a Complete RESTART has been saved for a full volume data read. If we attempt to apply this
RESTART (ALL, NO_DATA_READ) following a Boundary Data only read, any surfaces based on vol-
ume data will not be present.

Regarding transient streaklines however, It is possible however to do the following:

1. Read the volume data and compute streaklines from a transient sweep. This can be automated to
run in batch.

2. Read the Boundary Data only, read in the saved streakline data (particle path) and create an ani-
mation from a transient sweep.

In the above scenario, the time savings by not having to read in the volume data at each time will be
considerable. In general, the time required to read Boundary Data only is dramatically reduced rela-
tive to the time needed to read the volume data for the same case.

 Figure 4 Read Boundary Data Only

Turn this button on to read
boundary data only

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 11

Table of ContentsIndex

This feature is currently limited to work with unstructured datasets only. Writing DataGuideTM files is
disabled when the read boundary only switch is on.

Reading more than one Dataset at a time
You can read multiple datasets into FieldView. This is done with the Append button that appears on
all of the data input panels. This will allow you to read in, display and visualize several datasets at the
same time.

Note: The restarts from the current dataset can be applied to the second dataset. Imple-
menting this feature can save you a considerable amount of time. For more information see
"Current Dataset Restart" of the Reference Manual or Chapter 14 of the User’s Guide.

The datasets that you read into memory do not have to be of the same type or format or have the same
number of variables. One can be a structured dataset and another can be an unstructured dataset.
However, a Results file Append will always try to read results for the highest-numbered dataset. If it
succeeds, the current dataset will be changed to the highest-numbered dataset. A Results file
Replace will (as in previous versions of FieldView) always try to read results for the first dataset. If it
succeeds, the current dataset will be set to 1. Therefore, reading grid files and results files in the fol-
lowing order: Grid1, Grid2, Result1, Result2 will not yield the desired result in FieldView memory. The
order Grid1, Result1, Grid2, Result2 will need to be used.

Switching between datasets can be accomplished on the Dataset Controls panel or the Main Toolbar
(see Chapter 14 of Working with FieldView for more information). You can also switch between data-
sets by “quick-picking” (double-click) on any surface, rake, legend, etc. that belongs to that dataset.

Each dataset loaded into memory will have a separate set of functions (results) which will be shown
when the Functions button is pressed. Variables of one dataset cannot be used in formulas for a differ-
ent dataset (with the exception of Dataset Comparison mode).

For PLOT3D and split FieldView Unstructured files the grid will be automatically re-used when
appending results that are based on the same grid file. We expect users to save significant disk
space, and to see a substantial improvement in the handling of datasets where the grid is invariant with
time, or across several datasets.

All surfaces and rakes created will belong to a specific dataset. If you have two datasets in memory
and each dataset has a computational surface created in it, then both computational surfaces will be
surface number 1, specific to the given dataset. A surface cannot be switched to a different dataset.
Control of the current dataset is through the Dataset Controls panel or the Main Toolbar.

Dataset Comparison for Multiple Datasets
FieldView will let you make numerical comparisons between datasets. If the datasets are based on
the same underlying grid, Dataset Comparison is directly possible and formulas spanning datasets can
be created using the Function Specification Panel (see Function Specification Panel). If the underly-

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 12

Table of ContentsIndex

ing meshes differ, or if the datasets are based on different file formats, then the Dataset Sampling Tool
can be used to create a sampled dataset which can then be used for numerical comparisons (see
Dataset Sampling). Note that both Dataset Comparison and Dataset Sampling requires that when
your input data is not read serially with the FieldView Client and remote or local servers are used, the
Append Server button File.. Data Input.. Server Append option must be checked ON. This is the
default. Note also that Dataset Sampling is not supported on parallel servers.

Merged Transient Datasets
If more than one transient dataset is read into FieldView, it is possible to animate all time steps using
merged solution times for all datasets during the transient sweep. This feature simplifies the task of
creating an animation of multiple transient cases (see Use Merged Times).

Appending Datasets to the same Server Process
This feature permits you to use the same SERVER process to read more than one dataset. To turn
this feature on, first read a dataset into FieldView using the Client-Server feature. Then, to read
another dataset to that same SERVER process, in the File menu Data Input pulldown, turn the Server
Append button ON. With a minimum of two datasets read into FieldView in this way, the Dataset Sam-
pling and Dataset Comparison features will be fully enabled, except that Dataset Sampling is not sup-
ported when using Parallel Servers. These features will be discussed in more detail in sections
describing the Client-Server operation of FieldView.

Data Written On Different Systems
It is known that files created on LINUX or Windows systems have different byte ordering compared to
their UNIX counterparts. It is also often the case that datasets are created on one system, and post-
processed on another. The FieldView Unstructured (FV-UNS) and PLOT3D readers permit reading of
non-native byte ordered FV-UNS (all types) and PLOT3D (all types) files.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 13

Table of ContentsIndex

Support for Arbitrary Elements
Arbitrary elements are now widely used by commercial CFD solvers. A common discretization strategy
is to mesh the internal volume with regular hexahedral cells, the near-surface volume with extruded
cell layers, and generate arbitrary polyhedra to fill the gap in between the two. By default, FieldView
employs interpolation and gradient calculations natively for arbitrary polyhedra, consistent with other
commercial solvers such as STAR, STAR-CCM+ and FLUENT. Tetrahedralization on-the-fly is only
used in the following two cases:

• The cell has a cell-center node
• The cell has face-centered nodes

The importance of native handling for arbitrary polyhedra is highlighted in the illustration below:

Holes in the tetrahedralized mesh (on the left) are clearly seen.

Special handling is implemented in FieldView to calculate derivatives (gradient, divergence and curl)
for the case of split planar faces. These types of faces are commonly encountered in hexcore style
meshes, where mesh resolution within the core regions change from coarser to finer cells.

Tetrahedralization Native Arbitrary Element

 Figure 5 Arbitrary Element Handling

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 14

Table of ContentsIndex

Several key features are supported for datasets con-
taining arbitrary elements:

• Visual Dataset Comparison can be used to create
side-by-side illustrations

• Numerical Dataset Comparison with full support
for Dataset Sampling

• Current Dataset Restarts can be created on tet or
hex mesh cases and applied directly to arbitrary
element cases

• Surface based streamlines are supported
• Separation and re-attachment lines are sup-

ported.

Considerations when working with datasets containing Arbitrary Polyhedra
An individual element must have less than 256 vertices on a single face. And there can be no more
than 256 faces for a single element. Typically arbitrary elements will have 10 to 20 faces, with each
face having up to 10 edges. These values lie well below the limits specified.

The vortex core detection schemes and shock surface feature detection are currently not supported for
arbitrary elements.

If holes are seen in surfaces, it is because there is face mismatching between adjacent cells which are
intersected by the cutting planes of interest.

 Figure 6 Dataset comparison for Arbi-
trary Element cases

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 15

Table of ContentsIndex

Note that face mismatching can be tolerated by some commercial solver codes to obtain a solution. In
most cases however commercial solvers can run checks to find and fix holes in meshes.

Holes are present due to face
mismatching between adjacent cells.

No holes should be present for arb
poly meshes where adjacent face
matching is correctly handled.

Holes are present due to face
mismatching between adjacent cells.

No holes should be present for arb
poly meshes where adjacent face
matching is correctly handled.

 Figure 7 Arb Poly interpolation improvements

 Figure 8 Streamline improvements resulting from Arb Poly Interpolation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 16

Table of ContentsIndex

Owing to the native handling of arbitrary polyhedra, streamlines should not stop at arbitrary polyhedral
cell split faces. Since these cell types are commonly encountered in hexcore meshes, it is again
important to use native arbitrary polyhedral handling. Also, the native interpolation methodology being
applied provides for exact streamline seed placement. Streamline calculation times are slower for
arbitrary polyhedra relative to tetrahedral meshes.

In general, streamline calculations are expected to be 1.3x to 2.0x slower. These factors are derived
from test cases with comparable node counts. If you conduct timing tests on a polyhedral mesh which
has been derived from a tetrahedral mesh, the node count for the former will be much greater. Since
streamline calculation times are generally proportional to the number of nodes, timing comparisons
need to take this into account.

With some data, FieldView may print messages similar to the following during data input, and data will
be missing:

FV-UNS: Some arbitrary polyhedral cells were skipped (not read):

2 cells were skipped for the following reason:
Not enough nodes for an arbitrary polyhedron cell face.

12 cells were skipped for the following reason:
Arbitrary polyhedron cell is not valid. Faces did not connect to each

other, or a face had a duplicate edge.

If you run with FV_DEBUG set, you will see details prior to the above report, for example:

Invalid connection between cell faces at node: 2992.82 412.086 17.5403
Invalid connection between cell faces at node: 3314.28 721.914 48.1584
Invalid connection between cell faces at node: 3315.8 720.69 22.0393
Invalid connection between cell faces at node: 3316.11 720.564 28.4177
Invalid connection between cell faces at node: 3314.56 721.618 17.5472
Invalid connection between cell faces at node: 3317.15 718.894 48.3413
Invalid connection between cell faces at node: 3317.06 719.917 42.6953
Invalid connection between cell faces at node: 3316.03 720.999 31.8735
Invalid connection between cell faces at node: 3316.27 719.838 48.3413
Invalid connection between cell faces at node: 3316.73 720.35 48.1584
Less than 3 face vertices at node: 2993.55 411.326 17.5155
Invalid connection between cell faces at node: 2993.08 411.82 17.5282
Less than 3 face vertices at node: 2993.44 411.442 48.1495
Invalid connection between cell faces at node: 2998.09 407.904 46.0248

In addition, the following may print (with or without FV_DEBUG) due to new handling as of FieldView
17:

Some arbitrary polyhedral cells in grid N are not valid.
Attempting repair of invalid cells. This will take extra time.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 17

Table of ContentsIndex

If you still have problems, set the following environment variable to any value to revert to the more
extensive checking and repair done in FieldView 16.1 and earlier:

FV_ARB_POLY_FULL_CHECK

If you are writing code to export FV-UNS files, setting FV_ARB_POLY_FULL_CHECK while testing
your export is recommended. If FV_ARB_POLY_FULL_CHECK is set, a console warning will be
printed the first time any data with arbitrary polyhedron cells is read.

To revert to the previous behavior for reading arbitrary polyhedron cells, set the environment variable:

FV_PRE17_ARB_POLYS

If FV_PRE17_ARB_POLYS is set, a console warning will be printed the first time any data with arbi-
trary polyhedron cells is read.

Some arbitrary polyhedral cells were skipped (not read):
1404 cells were skipped for the following reason:
Arbitrary polyhedron cell faces do not have consistent clockness. All

the faces of a cell must have the same clockness.

For cases such as the above, it may be desirable to tetrahedralize a dataset containing arbitrary poly-
hdedra. A quick tetrahedralization scheme can be implemented during a data read operation using the
following environment variable:

FV_TET_CONV = 1

Another environment variable can be used to control how FieldView tetrahedralizes native arbitrary
polyhedral cells:

FV_ARB_POLY = 1

If FV_TET_CONV is set, then setting FV_ARB_POLY will change the tetrahedralization scheme to a
slower, more robust scheme. If failures in tetrahedralization occur, errors are sent to the console.

The feature extraction toolkit is currently based on tetrahedral cells. So, it is possible as a work-
around to read an arbitrary element dataset using the FV_TET_CONV environment variable, calculate
and export Vortex Cores, and then re-import them as particle paths to a dataset read using native arbi-
trary elements.

Note that this environment variable should not be used if FieldView instead prints a message similar
to the following:

Some arbitrary polyhedral cells were skipped (not read):
NNNN cells were skipped for the following reason:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 18

Table of ContentsIndex

Arbitrary polyhedron cell is not valid. Faces did not connect to each
other, or a face had a duplicate edge.

The environment variable can not be used to repair a grid with invalid arbitrary polyhedra, and errors
can be expected in processing results in this way.

FieldView Parallel Datasets
FieldView Parallel uses several worker processes, the total number being specified by the user, to
read datasets or create surfaces and/or rakes. The process of how the FieldView Client is used to
pass commands to the controller/worker servers, and receive information back from them is illustrated
in the figure below. At this time, the only "grid-parallel" data formats supported are either multigrid FV-
UNS, FLOW-3D, OpenFOAM, OVERFLOW-2, PLOT3D datasets, or those datasets which are read
using plugin readers written for parallel multi-grid file support. Note that all readers are supported for
"partitioned-parallel" (i.e., PFPR).

The Controller Server handles communications between the Worker Servers and the FieldView Cli-
ent. (Note that the FieldView Client is the part of FieldView that you normally see when you run Fiel-
dView). An outline of the data flow when running FieldView Parallel is shown in the following figure:

The FieldView Client first initiates the process of reading data. Grids from a dataset are distributed
onto the Worker Servers, as directed by the Controller Server. To create surfaces or rakes, the client
sends a request to the Controller Server. The Controller Server, in turn, calls the Workers in a loop.

 Figure 9 FieldView Parallel Operation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 19

Table of ContentsIndex

As each Worker completes its task, the Controller collects information. Once all Worker tasks are
complete, the Controller delivers the information back to the Client for visualization.

Q. What is the difference between a single multigrid vs parallel partitioned file?
The fundamental requirement of a dataset in order for it to show any scaling performance with Field-
View Parallel is that it must be made up of multiple grids (unless the Auto Partitioner is used). At
present the most commonly available type of multiple grid dataset is the one in which all of the grids
are stored in a single multigrid file. However, it is possible to break up multiple grid datasets into multi-
ple files, where each of the files may themselves contain multiple grids. We refer to this type of dataset
as being “partitioned”. Whether a file has been partitioned or not will have no effect on the Client side
operation of FieldView, as is illustrated below. Partitioned data can be written using any of the sup-
ported FieldView data formats, and is read into FieldView using a layout file. Please refer to the sec-
tion entitled Partitioned File Parallel Reader (PFPR) for more details.

In the example above for the Partitioned File Parallel FieldView case, 5 worker processors, each
associated with its own file system, are used in parallel. The partitioning of the single dataset into sev-
eral pieces is usually performed by the CFD solver code as it sets up to run the job in parallel.

Parallel FieldView
A dataset containing multiple grids is
read using several worker server
processes. Grids are load balanced
across the available worker pro-
cesses.

Partitioned File Parallel FieldView
A dataset, split into several different
partitions. Each partition can contain
one or more grids, and the partitions
are likely to be located on separate file
systems.

 Figure 10 Single File Parallel vs Partitioned File Parallel operation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 20

Table of ContentsIndex

Direct Readers in FieldView
The Data Input pulldown menu offers some or all of these panel selections (depending on licensing):

 Figure 11 Data Input pulldown menu

The readers listed are a
function of licensing options.
Your reader list may be con-
siderably shorter than the
one shown here.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 21

Table of ContentsIndex

Working with the Data Input Menu
The Data Input menu (shown in Figure 11) is made up of different sections. For several commercial
CFD solvers, there are either translators or export tools available to convert their output into a Field-
View compatible format. Getting data from these sources into FieldView is indicated in the menu with
the phrase [FV-UNS Export] - this implies that you will need to do something to the solver output in
order to be able to read the data into FieldView. So, as an example, in order to read data from the
commercial solver AcuSolve which has been translated into the FieldView Unstructured File format,
you would select the top entry, AcuSolve [FV-UNS Export], from this menu pulldown.

Other entries on the menu permit you to read data in its native format directly to FieldView. Examples
above include CGNS, FLOW-3D, HAVOC, PATRAN, SCRYU and UH3D, to name a few. There are
some cases where you can either read your dataset directly, or read the translated or exported dataset
instead. For the case of commercial solver FLUENT, you can either read the FLUENT native files
directly using one of the FLUENT [Direct Reader] selections from the Data Input menu, OR, you can
read an exported FV-UNS form of the data from FLUENT using the FLUENT [FV-UNS Export] option.

Note that legacy readers found in earlier versions of FieldView on a section called ’More Readers’ has
been removed, but FieldView still support restarts and scripts which used those readers in order to
maintain backward compatibility with those readers.

Reading Data Interactively with FieldView Parallel
When FieldView is started it performs the following three checks: 1. That FieldView Parallel is sup-
ported for this operating system, 2. That more than 1 processor (CPU) is present, and 3. Whether Fiel-
dView is licensed for parallel operation. The text shown under the Local Parallel option on your Data
Input menu will indicate what FieldView has found in these respects, on systems which currently sup-
port local parallel operation in Figure 12 below:

Runs least of either number of local
CPUs or licensed processes
[shared memory]

 Figure 12 Running Local FieldView Parallel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 22

Table of ContentsIndex

Local parallel
All FieldView Users are licensed for parallel operation. (Evaluation licenses are limited to 3 processes.)
Local parallel lets you run FieldView Parallel using whatever level of licensing you have. For best per-
formance, FieldView Parallel is designed to run only 2 parallel processes (-np 3) on systems with only
2 CPUs (i.e. dual-core systems), where you can expect a 2X factor improvement in performance for
most operations when running Local parallel. (If a system has only 1 CPU, the ‘Local parallel’ option
will be grayed out.)

On systems with a greater number of logical cores, you will be able to run up to your licensed number
of cores. All supported Customers are licensed with at least 8 cores. By default, Local Parallel will be
limited to lesser of either the number of parallel licenses or the number of locally available processors
(or CPUs). This is done in order to avoid the situation where someone with a 32 processor parallel
license (pfv32) would try to start all 32 processes on a local system that only has 8 processors avail-
able.

Additional Comments and Limitations
Full support is provided for RESTARTS amd FVX using parallel processing. This includes restarts writ-
ten with previous versions of FieldView which used differently named parallel options.

FVX support is also provided; the server_config argument for this is "Local parallel". The syntax
for the FVX read_dataset command is:

server_config = ’Local parallel’

Local FieldView Parallel operation is one possible way to run FieldView Parallel. It is also possible to
create a custom server configuration file to match your working environment. Additional details on
how to do this are documented in the User’s Guide, and in the Installation Guide.

AcuSolve Direct Reader
(www.altair.com)
This direct reader reads AcuSolveTM .Log files. The source code uses the latest libraries provided by
Altair, enabling full support of all features. In order to maintain backward compatibility, FieldView
restarts based on the AcuSolve Direct Reader prior to the AcuSolve Version 1.8B release will use the
former naming convention for the eddy_frequency scalar, dissipation rate.

This is a Plugin Toolkit Reader; the necessary files are installed as part of the normal FieldView instal-
lation on the following supported platforms: Windows 64-bit and Linux 64-bit. The standard location
for the reader source and the supporting libraries will be at FV_HOME/bin/plugins and FV_HOME/
bin/plugins/lib respectively. Alternately, these files can be placed in a different directory, as
specified using the environment variable FV_PLUGINS.

http://www.acusim.com/

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 23

Table of ContentsIndex

The AcuSolve direct reader permits the reading of additional nodal output, including the extended vari-
ables which may be stored during AcuSolve solver runs.

Extended variables from AcuSolve include gradients of almost all scalar and vector variables. Conse-
quently, it will take longer to read all of the additional supported variables. In order to avoid compro-
mising performance of simple postprocessing sessions, reading of the gradients will be enabled by
setting the environment variable FV_ACUSOLVE_GRAD.

The reader also provides the option of reading duplicate boundaries. When building a model for Acu-
Solve, many different types of commands utilize surfaces as input. For example, the application of
boundary conditions is done on a surface, a request for computing forces is done on a surface, identi-
fication of radiation parameters for view factor calculation is done on a surface, etc. Each of these
inputs creates a different set of output that gets stored in the AcuSolve database. However, these sur-
faces are often times the same. In that case, it is possible to eliminate the duplication of surfaces at
read time by checking for uniqueness. If a given surface is unique, it is imported by FieldView. If it is
not unique, then only a single instance of the surface is imported by FieldView and the duplicates are
ignored. Both toggles are off by default. With these changes, and also thanks to other optimizations in
the AcuSolve Direct Reader, the time needed to read an AcuSolve case has been divided by 4.

 Figure 13 AcuSolve [Direct Reader] Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 24

Table of ContentsIndex

The reader also provides support for FieldView regions. This allows you to be able to separately visu-
alize and control the fluid and solid regions which AcuSolve is capable of creating. Creating separate
regions for fluid and solid will make old restarts fail since FieldView does allow the region count to be
different from the one in the restart. In order to get older restarts to work with the reader, support for
regions can be disabled using the environment variable, FVREG_ACUSIM_OFF.

The AcuSolve Direct Reader supports AcuSolve’s latest multiphase capabilities, giving access to a
number of new variables, for visualizing phases or species. Figure 14 shows a multiphase simulation
from AcuSolve, using a VOF model. The Coordinate Surface is being colored by the volume fraction
of water at each point.

The AcuSolve Direct Reader supports mid-step mesh displacement, using the following environment
variable:

FV_ACUSOLVE_PREFER_MIDSTEP

If this environment variable is set to any value prior to the FieldView startup, then the reader looks for
mid-step mesh displacement. If this is found, it is used to displace the mesh, and also returned as a
variable called "mesh_displacement". The following message is printed to the console:

Displacing mesh coordinates using mid step mesh displacement field.

If this environment variable is set to any value prior to the FieldView startup, and mid-step mesh dis-
placement is not found, then the reader looks for end step mesh displacement. If found, this is used to
displace the mesh, and also returned as a variable called "mesh_displacement". The following
message is printed to the console:

Mid step mesh displacement field not available, displacing
 coordinates using end step mesh displacement field.

If the environment variable is not present (or unset), then the reader only looks for end step mesh dis-
placement. If found, this is used to displace the mesh, and also returned as a variable called
"mesh_displacement". The following message is printed to the console:

Displacing coordinates using end step mesh displacement field.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 25

Table of ContentsIndex

Changes made interactively to the "Read Extended Variables" and "Read Duplicate Boundaries" tog-
gle buttons on the AcuSolve Direct Reader panel (see Figure 13) are retained within the FieldView
session and saved as well as preferences, which means FieldView will remember them.

Known limitations
There is no direct reader for Mac OS X or 32-bit Linux or 32-bit Windows. It is possible to use the
direct reader in client-server mode using the supported server platforms (64-bit Linux and 64-bit Win-
dows).

CGNS
(cgns.github.io)
A plugin Reader has been added for CGNS to read both the structured and unstructured formats.

 Figure 14 Multi-phase AcuSolve simulation visualized in FieldView

http://cgns.github.io

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 26

Table of ContentsIndex

CGNS Unstructured/Hybrid Reader
(cgns.github.io)
We recommend that this reader be used to read CGNS Unstructured datasets, replacing the pre-exist-
ing CGNS Unstructured Reader. This reader can also be used to read CGNS Structured datasets,
subject to certain limitations. A major distinction of this reader is that it supports both ADF and HDF5
file formats and libraries. Another key distinction is that streamline wall marking, which prevents
streamlines from passing through wall boundaries, is implemented with this reader.

The CGNS Unstructured/Hybrid Reader for FieldView has been updated with CGNS library version
3.3.1.

To read a CGNS Unstructured file, start by selecting the CGNS Unstructured/Hybrid entry on the Data
Input pulldown menu. On the CGNS Unstructured/Hybrid panel, click Read Grids & Results Data...
When you do this, you will see a file browser which will let you navigate to the location of the .cgns
file that you wish to read.

Note: Prior to the introduction of the CGNS Unstructured/Hybrid Reader described in the previous sec-
tion, FieldView had two separate readers for unstructured and structured CGNS. These readers are
only compatible with older versions of CGNS and we recommend that the more recent CGNS Unstruc-
tured/Hybrid reader be used instead

 Figure 15 CGNS Unstructured/Hybrid Data Input Panel

http://cgns.github.io

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 27

Table of ContentsIndex

The local file browser will automatically apply a filter, *.cgns, to more easily locate files of this format
type.

CGNS files written using either nodal or cell-centered formats can be read. For the case of cell-cen-
tered data, FieldView does nodal interpolation at the time that the dataset is read. Also, full support is
available to read standard and arbitrary polyhedral cells.

Known limitation
• This reader can be used to read CGNS Structured datasets. However, it will not be able to provide

and structured data context - it will not be possible to create computational surfaces, probe for IJK
values. If structured boundaries are defined using a .fvbnd file, they will not be available.

FIDAP
(www.ansys.com)
This data reader will read in files from the FIDAP program from FLUENT. FieldView reads the
FDNEUT files from Version 7 or later of FIDAP. The FDNEUT file needs to be exported from FIDAP for
input into FieldView using the FICONV command.

FIDAP transient NOMOMENTUM FDNEUT files can now be read. The velocity field for the first time
step will be applied to all time steps.

When 2D FIDAP data is read into FieldView, it is ‘extruded’ by a small amount that is a function of the
XY extent of the data, but at least 1.0e-5 units. This extrusion will be just enough for FieldView to
properly display the data, but will not affect its 2D appearance.

 Figure 16 CGNS Unstructured/Hybrid File Browser

http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 28

Table of ContentsIndex

This reader is currently accessed from the fly-out menu in the Data Input pulldown menu, when you
select the More Readers... option.

FLOW-3D® Animation Data
(www.flow3d.com)
This direct reader can read Animation Data, when present, in a flsgrf.dat file. This is a Plugin
Toolkit Reader; the necessary files will be installed as part of the normal FieldView installation proce-
dure on the following supported platforms: WINDOWS 64bit, LINUX 32 and 64bit. The standard loca-
tion for the reader source and the supporting libraries will be at FV_HOME/bin/plugins and
FV_HOME/bin/plugins/lib respectively. Alternately, these files can be placed in a different direc-
tory, as specified using the environment variable, FV_PLUGINS.

FLOW-3D® Restart Data
(www.flow3d.com)
This direct reader can read Restart Data, when present, in a flsgrf.dat file. This is a Plugin Toolkit
Reader; the necessary files will be installed as part of the normal FieldView installation procedure on
the following supported platforms: WINDOWS 64bit, LINUX 32 and 64bit. The standard location for
the reader source and the supporting libraries will be at FV_HOME/bin/plugins and FV_HOME/
bin/plugins/lib respectively. Alternately, these files can be placed in a different directory, as
specified using the environment variable, FV_PLUGINS.

FLOW-3D®
(www.flow3d.com)
There are two ways to read the standard FLOW-3D® flsgrf.dat files into FieldView. The direct
readers used to read either the FLOW-3D® Animation Data or the FLOW-3D® Restart Data have been
previously described.

The legacy FLOW-3D® Reader, which only reads RESTART data, is accessed from the fly-out menu
in the Data Input pulldown menu, when you select the More Readers... option. This data reader will
read in native flsgrf.dat files from the FLOW-3D® program from Flow Science (Los Alamos, NM) for
Version 6 or later. Note however that there are known problems with FLOW-3D® VERSION 9.1, so it
is recommended that flsgrf.dat files generated using the latest FLOW-3D® release be read using the
Plugin Toolkit reader described above.

This data reader may use the FLSINP file used when running FLOW-3D®. The presence of the
FLSINP file is not required and may not provide meaningful information for newer files. Support is pro-
vided mainly for backward compatibility. The FLSINP file will be checked for in the same directory as
the FLSGRF file. This file is used to control how the data from the flsgrf.dat file is read. The following
information is read from the FLSINP file:

IGRP2 - If equal to 1, read in spatial and solidification data. Only solidification data at the end
of the calculation is loaded

IBFF - If equal to 0, iblanks will not be used

http://www.flow3d.com
http://www.flow3d.com
http://www.flow3d.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 29

Table of ContentsIndex

If equal to 1, iblanks will be based on the volume fraction
If equal to 2, iblanks will be based on the volume and fluid fractions
If equal to 3, iblanks will be based on the complement on the volume fraction (used

for plotting wall quantities)

BVALVF - blank out this node when VF(IJK) < BVALVF

BVALF - blank out this node when F(IJK) < BVALF
The defaults are as follows:
IGRP = 1, IBFF = 0, BVALVF = 0.5, BVALF = 0.5

If the FLSINP file is not found, a warning message will be presented, and your data will be scaled by
the default values.

The I, J, and K boundaries of the grid are treated as walls.

Note: The legacy FLOW-3D® reader will work with FLOW-3D® Version 9.0 files. It should
handle multiple grids or blocks.

Note: FLOW-3D® Animation data is supported with the direct Plugin reader ONLY.

See Free Surface Flow Tutorial in Chapter 4 of the User’s Guide for more information on working
with FLOW-3D® data.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 30

Table of ContentsIndex

ANSYS-Fluent CFF [Direct Reader]
(www.ansys.com)
This direct reader can read CFF files from ANSYS-Fluent. These files can be recognized to their
.cas.h5/.dat.h5 extensions. Legacy .cas/.dat Fluent files can still be read with FLUENT cas/dat Direct
Reader, but that format has been superseded by the new HDF5 based CFF format.

The ANSYS-Fluent CFF reader is based on a Software Development Kit (SDK) provided and main-
tained by ANSYS through a partnership between ANSYS, Inc. and Tecplot, Inc. Unfortunately, this
SDK doesn't yet support MPI parallel read operations. Therefore, the new ANSYS Fluent CFF reader
is limited to Local Serial and Client-Server Serial read operations.

Note: All CFF compression levels are supported. Files will be uncompressed on the fly at
read time.

Variables names are obtained from a dictionary file (ANSYS_FLUENT.xml) provided with the FieldView
installation. If instead you prefer to have FieldView use a different file, such as the one provided with a
specific version of ANSYS-Fluent, set the environment variable CFF_VARIABLE_CONFIG_DIR to
have it point to the directory where the alternate ANSYS_FLUENT.xml file is located.

Note that variable names will differ slightly from the ones obtained with the legacy cas/dat reader. They
will now match exactly variable names as seen in the ANSYS-Fluent interface.

This reader is perfect for checking simulations from ANSYS-Fluent. But if you need the best perfor-
mance or know you're going to load this simulation in FieldView multiple times, we encourage you to
use the ANSYS-Fluent export to the FieldView Unstructured format (FVUNS).

Known Limitations
• Only 3D results are supported.
• Particles computed with the DPM model do not get imported as Particle Paths. Use the FieldView

Particle Paths (FVP) export from ANSYS-Fluent instead.
• No parallel (only Local Serial or Client/Server Serial). The ANSYS SDK does not provide support

for MPI parallel read

http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 31

Table of ContentsIndex

To read FLUENT .cas.h5 and .dat.h5 files, start by selecting the ANSYS-Fluent CFF [Direct
Reader] entry on the Data Input pulldown menu. Then on the panel, click Read Grid Data...
When you do this, you will see a file browser which will let you navigate to the location of the .cas.h5
file that you wish to read, to be followed by the .dat.h5 file.

 Figure 17 ANSYS-Fluent CFF [Direct Reader] Data Input Panel

 Figure 18 ANSYS-Fluent CFF [Direct Reader] File Browser for .cas.h5 files

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 32

Table of ContentsIndex

After you select the file you want to read, click the Open button. FieldView will prompt you if multiple
.cas.h5 files exist, asking if you would like to read the data as transient. (Note that ANSYS-Fluent
exports transient data in compliance with FieldView’s transient naming convention as described in the
Transient Data section of our Reference Manual [PDF]. After the prompt is answered, a second file
browser is launched to allow you to read the .dat.h5 file(s.) Select the corresponding results file, and
click on the Open button to complete reading of the dataset.

It is also possible to select a different .dat.h5 file (of a name not matching the grid file name) or
read a steady grid, with transient results. At this point, if you cancel the file browser, you will return to
the Input panel shown above in Figure 17.

 Figure 19 ANSYS-Fluent CFF [Direct Reader] File Browser for .dat.h5 files

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 33

Table of ContentsIndex

FLUENT cas/dat Direct Reader
(www.ansys.com)
This legacy Direct reader FLUENT .cas and .dat files remains an input option, but is deprecated to
the recommended ANSYS-Fluent CFF [Direct Reader]. It features many improvements compared to
the FLUENT Direct Reader including faster read times, support for arbitrary polyhedra, the ability to
read .cas and .dat files with different names and more consistent variable name matching with
FLUENT. All currently known data input issues are resolved with this reader. Also, restarts created on
FLUENT datasets based on the pre-existing FLUENT Direct Reader can be applied after reading data
with the FLUENT cas/dat Direct Reader using the Complete Restart, No Data Read option.

To read FLUENT .cas and .dat files, start by selecting the FLUENT cas/dat [Direct Reader] entry
on the Data Input pulldown menu. On the FLUENT cas/dat [Direct Reader] panel, click Read Grid
Data... When you do this, you will see a file browser which will let you navigate to the location of the
.cas file that you wish to read.

 Figure 20 FLUENT cas/dat [Direct Reader] Data Input Panel

http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 34

Table of ContentsIndex

After you select the file you want to read, click the Open button. When this is done, a second file
browser is launched to allow you to read the .dat file. FieldView automatically attempts to locate
the matching .dat file for the .cas file which has already been read. If a matching file is found, it
will show up in the Filename section of the file browser. You can read this data file by clicking the
Open button.

 Figure 21 Fluent cas/dat File Browser for .cas files

 Figure 22 Fluent cas/dat File Browser for .dat files

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 35

Table of ContentsIndex

It is also possible to read a different .dat file - the former restriction on being able to read a matched
.cas/.dat pair has been removed. You can use the file browser to locate a .dat file and read it at
this point. If you cancel the file browser, you will return to the FLUENT cas/dat Data Input panel (see
Figure 20 FLUENT cas/dat [Direct Reader] Data Input Panel).

This reader can also be used to read FLUENT mesh (.msh) files, which are very similar to FLUENT
.cas files, but only contain the mesh information. Therefore, no functions will be available after the
dataset is read.

To read a FLUENT .msh file, start by selecting the FLUENT cas/dat [Direct Reader] entry on the
Files > Data Input pulldown menu. On the FLUENT cas/dat [Direct Reader] panel, click Read Grid
Data... When you do this, you will see the Open Grid File browser. The default File of type: filter is set
to "(*.cas)"; change this to "All Files (*)" and navigate to the location of the .msh file that you wish
to read. After you select the file you want to read, click the Open button. After this is done and the
Open Results File browser is launched, click Cancel.

Note: The legacy FLUENT cas/dat Direct Reader does not support compressed files; in
order to be read, files must be uncompressed.

We expect that it is possible to read a restart which was based on the pre-existing FLUENT direct
reader onto a FLUENT dataset which was read using the FLUENT cas/dat direct reader. Restarts of
the type Complete, No Data Read and Current Dataset will work in this way. Variable name mapping
from the older names to the newer ones, thereby preserving the restart contexts, is done automatically.

Known changes in behavior
The classification of which variables are considered boundary-only, volume variables or both has
changed. If you use the new reader with a restart created with the old reader, we will automatically
convert boundary-only to volume and vice versa as needed. (The exception is if the old restart has a
boundary-only variable such as heat flux on a non-boundary surface.)

FLUENT Direct Reader
(www.ansys.com)
This legacy Direct reader FLUENT .cas and .dat files remains an input option, but is deprecated to
the recommended ANSYS-Fluent CFF [Direct Reader] The legacy reader is not available for the
macOS platform. Known Limitations

Although FLUENT can read .gz compressed files, this reader lacks this capability. It is necessary to
unzip compressed files in order for them to be read correctly. The base names for the .cas and the
.dat file must match. Note that the export from FLUENT to the FieldView Unstructured format is fully
supported. Because some variables are derived by FLUENT, they may only be available in the
exported files and not the direct reader.

http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 36

Table of ContentsIndex

FLUENT Universal
(www.ansys.com)
This data reader will read in the Universal files from the FLUENT program (Version 4.2 and below)
from Fluent, Inc. Cell types are preserved and all of the dependent variables listed in the Solution Data
Section of the Universal file are stored in FieldView. In addition, wall cells and porous cells are
marked during input. This file format has been superseded by the FLUENT export to FieldView
Unstructured File Format. Except for legacy datasets, we recommend that you do not use this format
as later FLUENT features are not supported.

Note: This is not a native FLUENT dataset reader. FLUENT datasets currently need to be
exported from FLUENT in order to be read into FieldView. The FLUENT UNIVERSAL file
format is a very old format, which is no longer in use with current FLUENT products.

This reader is currently accessed from the fly-out menu in the Data Input pulldown menu, when you
select the More Readers... option.

FLUENT/UNS (and RAMPANT)
(www.ansys.com)
This reader is only used to read in the FieldView Case and Data files from the FLUENT/UNS program
from Fluent, Inc (Version 5.2 or later) or the RAMPANT program (Version 2.1 or later). The FieldView
Case + Data format is one of the available FLUENT export options, and has been the default export for
versions of FLUENT prior to FLUENT 6.1.

2D FLUENT/UNS data must be exported from FLUENT (for versions before FLUENT 6.2) using the
FieldView Case + Data option. The FieldView Unstructured Export option from FLUENT supports 2D
data with the release of FLUENT 6.2. The RAMPANT-FLUENT/UNS reader ‘extrudes’ the 2D data by
a small amount that is a function of the XY extent of the data, but at least 1.0e-5 units. This extrusion
will be just enough for FieldView to properly display the data, but will not affect its 2D appearance.
FieldView will recognize a correctly named sequence of 2D FieldView Case + Data files as a transient
case.

Note: This is not a native FLUENT data reader. FLUENT datasets currently need to be
exported from FLUENT in order to be read into FieldView.

This reader is currently accessed from the fly-out menu in the Data Input pulldown menu, when you
select the More Readers... option.

FV-UNS Data Input (Native FieldView Unstructured Format)
The native FieldView Unstructured (FV-UNS) format is widely used to read unstructured data into
FieldView. Several of the major commercial solvers support exporting or translating their data into the
FV-UNS format. These solvers will be covered after general comments about the FV-UNS format.

http://www.ansys.com
http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 37

Table of ContentsIndex

Three types of FV-UNS formats are available: Binary, Unformatted and ASCII. All three formats are
described in Appendix D of this Reference Manual.

Cylindrical Note: When cylindrical coordinates are specified using an FVREG file (Region
definition), then XYZ information is presented to you in FieldView as RTX/Z (Radius, Theta,
X/Z) data. That is, Coordinate surface sliders, the 2D plotting system, Point Probing,
Streamline seeding, Exporting, etc. will be in RTX/Z coordinates instead of the usual XYZ
coordinates. See Chapter 3 of this Reference Manual for more information. Note that the

Grid information in the FV-UNS file itself is still required to be in XYZ coordinates.

Transient FieldView Unstructured Data
FieldView supports transient FV-UNS datasets. Transient FV-UNS data requires one file per time
step. Hence, four time steps require four FV-UNS files.

This is different from other solvers (CFX-4 .dmp file, for example), where all data resides in a single
file. One advantage of this technique is that it can be far quicker to access a specific time step during
visualization.

A dataset will automatically be recognized as transient if each file has a time step number embedded
in its name using a convention described in Transient Data. The actual extension used is not import-
ant, but “*.uns” or “*.fvuns” is recommended, and typically used.

If any one of the files of the series is chosen, FieldView will find other files with the same file naming
convention in the directory and present you with the option of treating the set as transient. If agreed to,
the chosen time step will be loaded into memory, and the remaining filenames stored for reference.
Other time steps can be accessed through the Transient Data Controls panel (see Chapter 14 of
Working with FieldView for more details).

See Vortex Shedding Tutorial in Chapter 8 of the User’s Guide for more information on working with
transient FV-UNS data.

Face Data for FieldView Unstructured Data
FieldView supports face data on boundary faces of FV-UNS data. See Appendix D of this Reference
Manual for complete information about the FV-UNS file formats.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 38

Table of ContentsIndex

Ensight Reader
The Ensight reader has been optimized for transient datasets where grids are not moving, making
rebuilding of the grid data unnecessary when changing timesteps. This reader supports cases with
moving grids, as well as a changing number of elements and nodes over time.

To read data of this format, select the Ensight entry from the Data Input pulldown menu and click Read
Grids & Results Data... When you do this, you will see a file browser (using the *.case filter) as illus-
trated below.

 Figure 23 Ensight Data Input Panel

 Figure 24 Ensight File Browser for ENSIGHT Gold files

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 39

Table of ContentsIndex

The local file browser has two filters, *.encas and *.case, to more easily locate files of ENSIGHT
Gold format types. The Reader can handle ENSIGHT Gold files for both nodal based data (scalar per
node) and cell centered data (scalar per element). For cell centered data, nodal interpolation is done
at read in time by FieldView using interpolation methods which are consistent with those used by com-
mercial solver codes, such as FLUENT (Ansys) or STAR-CCM+ (CD-adapco), for standard and arbi-
trary polyhedral cell types.

Known limitations
For transient cases, ENSIGHT Gold files must be written in the format where a set of files have the
time step embedded in the name for each time step, for each of the scalars and vectors written. This
is how the exports are typically written from commercial solver codes such as AcuSolve, FLUENT and
STAR-CCM+.

Automation for the Ensight completely supported with Restarts, FVX and Python scripting.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 40

Table of ContentsIndex

Tecplot 360 Reader
The Tecplot reader has been optimized for transient datasets where grids are not moving, making
rebuilding of the grid data unnecessary when changing timesteps. This reader supports cases with
moving grids, as well as a changing number of elements and nodes over time.

To read a Tecplot 360 file, select the Tecplot 360 entry from the Data Input pulldown menu, and click
Read Grids & Results Data... When you do this, you will see a file browser, filtering for *.plt, files as
as illustrated below.

 Figure 25 Tecplot 360 Data Input Panel

 Figure 26 Tecplot 360 File Browser

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 41

Table of ContentsIndex

Known changes in behavior and limitations
• Solution times for transient data files cannot be read from Tecplot files. To create streaklines or to

use the solution time escape sequence %%T for annotation, it is possible to set a solution time
value with the Use Delta Time function on the Transient Controls panel.

• Grid coordinates in Tecplot files do not need to be written using standard names or locations. Spe-
cial handling has been included to try to correctly interpret variations on how this data is stored.

Automation for the Tecplot 360 Reader is completely supported with Restarts, FVX and Python script-
ing.

HAVOC
(www.corvidtec.com)
This reader is based on a proprietary format, and is intended to read results from a CFD hydrocode
called CTH. This code, which is available from Sandia National Laboratories, is a multi-material, large-
deformation, strong shock wave, solid mechanics code. It is capable of handling multi-phase, elastic-
viscoplastic, porous and explosive materials. CTH has several material models appropriate for strong
shock, large deformation calculations. The reader is accessible in FieldView from the standard pull-
down list for reading data and is entitled HAVOC.

LS-DYNA d3plot Direct Reader
(www.lstc.com)
The LS-DYNA d3plot Direct Reader is the recommended reader for LS-DYNA datasets. It features
many improvements compared to the pre-existing LS-DYNA State Database Direct Reader and
resolves all known bugs, including some interpolation problems present in earlier versions of third
party routines this reader was based on.

http://www.corvidtec.com
http://www.lstc.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 42

Table of ContentsIndex

To read an LS-DYNA d3plot file, select the LS-DYNA d3plot [Direct Reader] entry from the Data Input
pulldown menu. On the LS-DYNA d3plot [Direct Reader] panel, click Read Grid & Results Data...
When you do this, you will see a file browser, as illustrated below.

The local file browser has a filter, d3plot, to more easily locate files of LS-DYNA d3plot format.

 Figure 27 LS-DYNA d3plot [Direct Reader] Data Input Panel

 Figure 28 LS-DYNA d3plot [Direct Reader] File Browser

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 43

Table of ContentsIndex

Known changes in behavior
Strain energy is now interpreted as a boundary-only variable. For older restarts, the conversion from
volume to boundary only data is automatically done.

In applying an old restart with thresholding turned on, it may be possible that surfaces will show up with
holes. The holes are actually a result of a very small difference resulting from changes to interpolation.
These holes (see Figure 29 LS-DYNA interpolation issue with Thresholding) can be removed by
interactively pushing the Threshold Function slider to the range extents.

LS-DYNA
(www.lstc.com)
A direct reader is now available to read LS-DYNA d3plot files. This is a Plugin Toolkit Reader; the nec-
essary files will be installed as part of the normal FieldView installation procedure on all supported
platforms with the exception of MAC OS X and LINUX IA64. The standard location for the reader
source and the supporting libraries will be at FV_HOME/bin/plugins and FV_HOME/bin/
plugins/lib respectively. Alternately, these files can be placed in a different directory, as specified
using the environment variable, FV_PLUGINS.

The supported element types for this reader include triangles and quads used for thin shells, and tets,
pyramids and hexes used for volumes and thick shells.

A FieldView Formula Restart file has been provided to automatically generate all tensor invariant rep-
resentations for the shear and stress tensor data. This is available on the FieldView DVD (see /
misc/lsdyna/lsdyna_formulas.frm).

Known Limitations

 Figure 29 LS-DYNA interpolation issue with Thresholding

http://www.lstc.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 44

Table of ContentsIndex

There are some element types which can be used in LS-DYNA simulations which are not currently
supported. They include: beams, trusses, springs, lumped masses and dampers. It is our expecta-
tion that we will be able to read datasets which contain these types of elements - however, they will not
be available for postprocessing once the data is in FieldView.

We will not be able to read datasets containing smooth particle hydrodynamics (SPH) data.

There is currently no support to read time history plot (.d3dhdt) files.

NPARC/WIND
(www.grc.nasa.gov/WWW/wind/)
The NPARC/WIND reader within FieldView is implemented as a standard plugin. If you have your
own NPARC WIND or WIND Unstructured reader source, or if you have obtained a plugin reader from
the NPARC Alliance, you can exchange it with the reader source distributed with FieldView. This
infrastructure change also enables the use of WIND US (unstructured) reader plugin supplied by the
NPARC Alliance, resolving internal issues. Please contact Tecplot Inc. or the NPARC Alliance for
additional details concerning the WIND US (unstructured) reader.

The NPARC/WIND reader will accept input of structured data from grid (*.cgd) and data (*.cfl) files
or from combined (*.cgf) files. Combined files are supported if you read them first as a grid file and
then again as a results file. FieldView does not support unstructured NPARC/WIND data. This reader
also supports grid subset selection in the case of multi-grid files and grid point increment (where, for
example, every other point in the selected grids are read in). If an unstructured grid is selected to be
read in, a warning will be issued in the xterm window where FieldView is running and the unstructured
grid data will be otherwise ignored. For unsupported, cell centered results, a warning message is writ-
ten to the xterm where FieldView is running. In addition, there is no support for transient data at this
time.

Note: The FieldView NPARC/WIND reader supports user-specified variables in the results file.

Structured Boundary File
The NPARC/WIND Structured Boundary file is automatically created by the reader. Details about this
file in particular and the Structured Boundary file in general can be found in Appendix H of this Refer-
ence Manual.

Solver variable conversion
The NPARC/WIND reader converts all of the solver variables from the SI (MKS) system of units to the
English (FSS) system of units, when applicable. However, note that all grids are in units of inches.
Any variables that the reader is unable to convert will print a message such as:

No conversion of anut for zone 1

in the console window in which FieldView is being run.

Constants and Formulas

http://www.grc.nasa.gov/WWW/wind/

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 45

Table of ContentsIndex

A complete description of the handling of NPARC/WIND constants by the reader and the availability of
formulas through the use of a Formula Restart file can be found in Appendix N of this Reference
Manual. The formula restart file, wind.frm, is installed in the /fvx_and_restarts directory of the
FieldView installation.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 46

Table of ContentsIndex

OpenFOAM
(www.openfoam.com)
A direct reader is available for OpenFOAM datasets created using the free, open source CFD software
package produced by OpenCFD Ltd. Meshes generated from snappyHexMesh as well as other third
party tools are supported. The capabilities of this reader include:

• the ability to read either reconstructed or decomposed (partitioned) data in either ASCII, binary or
gzip compressed formats,

• the ability to read more than one partition per processor,
• the ability to list all time steps & select a starting time step,
• the automatic recognition of all boundary names, with the option to either read or skip partition-to-

partition interfaces,
• the automatic recognition of all scalars (including tensor components) and vectors,
• streamline wall marking,
• grid subsetting,
• ability to read moving mesh cases,
• optimization for fast & accurate interpolation of standard cell types (hex, tet, pyramid & prism),
• full FVX & RESTART support,
• support for conjugate heat transfer problems and multi-region datasets (fluid, solid).

To read an OpenFOAM case, you can choose one of the following three methods:

(a) select the system/controlDict file for the case, or

(b) select any file in the top-level case directory (such as the fake files created by paraFOAM, or a
log file), or

(c) select the system/decomposeParDict file for the case

Selecting (a) or (b) will allow both partitioned and non-partitioned cases, but will read the non-parti-
tioned representation if both are present. In general, FieldView will look first for either a single grid or
recombined solution. If found, we read this version of the dataset. If the dataset is neither single grid
nor recombined, then in cases (a) or (b), we look for a partitioned case.

It is possible to have only a grid file at the top level for case (a) or (b). In this case, if you only have
results for partitioned data, this is what will get read.

To look explicitly for a partitioned case always, use (c).

To read an OpenFOAM case using FVX, the data_format option is set to ‘openfoam’.

When an OpenFOAM dataset is read, all time steps are available for selection instead of just the time
steps that have solver results. In time step selection panel, there is an extra time step at the very
beginning, usually time=0. This "initial" time step typically contains the initial values of many of the
variables (these are often all zero, with the exception of boundaries). Since OpenFOAM only assigns

http://www.openfoam.cfd

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 47

Table of ContentsIndex

step numbers to solver time steps, we assign a step number to the initial time step, handling cases
having either positive, or positive and negative, time steps.

The inclusion of the initial time step affects Restarts older than FieldView 13.2, since the number of
time steps increases by 1. To use a Complete Restart saved from a previous version of FieldView, the
initial time step can be ignored by setting an environment variable:

FV_OF_NO_INIT_COND = 1

It is possible to save read time and memory by setting the environment variable
FV_OPENFOAM_NO_PROC_BND

to any value, which will have FieldView avoid converting OpenFOAM processor boundaries to Field-
View boundaries, when loading results with the "OpenFOAM [Direct Reader]".

The default behavior (in the absence of FV_OPENFOAM_NO_PROC_BND) is unchanged - the processor
boundaries are converted into FieldView boundaries.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 48

Table of ContentsIndex

OVERFLOW-2
The NASA CFD code OVERFLOW-2 is used widely by the rotorcraft, spacecraft and fixed-wing com-
munities for design and performance analysis. OVERFLOW-2 is an evolutionary code combining
established structured-grid CFD algorithms with structural dynamics, overset grid methods, RANS/
Hybrid-LES turbulence modeling, high-temperature gas dynamics and chemical/contaminant transport
modeling. OVERFLOW-2 employs a modified PLOT3D solution file output format which will be
described in detail below.

Reading Grid Files
Grid files match the standard PLOT3D file (Unformatted, single and double precision, big- or little-
endian) and data (single and multi-grid, IBLANK) formats. PLOT3D grid files may be supplied by the
user and will typically have the standard name grid.in. OVERFLOW-2 can also generate grids, or
bricks, and these (x.*) files are always multigrid PLOT3D files with IBLANK information. Concerning
grids, full FieldView compatibility has been included for

1. Boundary surfaces defined with .fvbnd files
2. Regions, defined with .fvreg files
3. Create Exterior Bnd File (from the Tools pulldown menu)
4. Create Wall Bnd File (from the Tools pulldown menu)

 Figure 30 OVERFLOW-2 Direct Reader for FieldView

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 49

Table of ContentsIndex

Reading Q Files
A primary difference between the standard PLOT3D solution files and the OVERFLOW-2 solution files
is the presence of one or more additional Q variables. The sixth Q variable is always the specific heat
ratio, gamma, and is always present, even if it is constant. The direct reader reads the OVERFLOW-
specific parameters NQ, NQC and NQT which dictate the total number of Q variables, the number of
chemical components and the *(implicit) number of turbulence modeling variables present in a solution
file, respectively. These additional parameters are printed to the console window. A typical output, fol-
lowing a successful read of an OVERFLOW-2 dataset might look like:

NQ = 9 NQC = 2 NQT = 1
Q variable names:

Density (Q1)
x-momentum (Q2)
y-momentum (Q3)
z-momentum (Q4)
Stag. energy (Q5)
gamma (Q6)
species density 1 (Q7)
species density 2 (Q8)
turbulence model quantity 1 (Q9)

Another specific difference between the standard PLOT3D format and the OVERFLOW-2 format is an
expanded section of constants which are used to derive advanced built-in functions. These constants
are:

GAMINF freestream specific heat ratio (gamma-inf)
BETA sideslip angle
TINF freestream dimensional temperature (Rankine)
IGAM specifies the thermodynamic model;
HTINF freestream stagnation enthalpy (H-inf)
HT1, HT2 the lower and upper stagnation enthalpy limits for IGAM=2
RGAS[NQC] an array of specific gas constants;
FSMACH freestream Mach number;
TVREF simulation time (t)
DTVREF timestep size (delta-t).

The above constants are available for use in the FieldView function calculator, and may be used to
create formulas. The correct syntax for use in the function calculator is to add OVERFLOW as a prefix to
the constant, for instance, REFMACH becomes OVERFLOW_FSMACH.

Several specific modifications have been made to correctly derive many built-in functions that are
dependant upon the specific heat ratio, gamma, and/or the thermal gas constant, R. These newly
derived functions are included along with the PLOT3D functions - specific OVERFLOW functions will
have the string [OVERFLOW] appended to their names.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 50

Table of ContentsIndex

To avoid RESTART and formula name conflicts, the internal variable FSMACH will be assigned the
value of REFMACH_OVERFLOW when reading OVERFLOW-2 datasets. This assignment also correctly
handles the divide-by-zero problem which could potentially occur when FSMACH = 0 (as in the case of
hover flight for rotorcraft applications).

In converting [PLOT3D] to [OVERFLOW] functions and formulas, GAMINF (freestream GAMMA) is
used instead of GAMMA (previously a constant, fixed value). The scalar variable gamma(Q6) is read
from the OVERFLOW q-file and is used in all formulas involving GAMMA.

Special handling is also required for the case of the freestream gas constant, R. The appropriate
choice for R will depend upon the thermodynamic model as follows:

A. If NQC < 2 and IGAM = 0 or 1, R = 1 and is constant everywhere.

B. If NQC < 2 and IGAM = 2, R is a function of the stagnation enthalpy and RGAS[].

C. If NQC > 1, IGAM is ignored, R is a function of the species mass fraction (yk) and
species gas constants (RGAS[]).

For case A., RGAS[] is not defined and should not be used. Later versions of OVERFLOW have ini-
tialized RGAS[] more precisely but this is not sufficient for proper user support. For cases B. and C.,
since a derived function for R is provided, it is recommended that functions use this instead. This will
be consistent for all OVERFLOW-2 functions.

The complete list of derived scalars and vectors for the OVERFLOW-2 reader are:

Stagnation density [OVERFLOW]
Norm. stag. density [OVERFLOW]
Pressure [OVERFLOW]
Norm. pressure [OVERFLOW]
Stagnation press. [OVERFLOW]
Norm. stag. press. [OVERFLOW]
Cp [OVERFLOW]
Stagnation Cp [OVERFLOW]
Pitot pressure [OVERFLOW]
Pitot press. ratio [OVERFLOW]
Log(norm. pressure) [OVERFLOW]
Temperature [OVERFLOW]
Norm. temperature [OVERFLOW]
Stag. temperature [OVERFLOW]
Norm. stag. temp. [OVERFLOW]
Log(norm. temp.) [OVERFLOW]
Enthalpy [OVERFLOW]
Norm. enthalpy [OVERFLOW]
Stag. enthalpy [OVERFLOW]
Norm.stag.enthalpy [OVERFLOW]

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 51

Table of ContentsIndex

Norm. int. energy [OVERFLOW]
Norm. stag. energy [OVERFLOW]
Mach number [OVERFLOW]
Speed of sound [OVERFLOW]
Entropy [OVERFLOW]
Entropy measure s1 [OVERFLOW]
Shock function [OVERFLOW]
Filter. shock func. [OVERFLOW]
Press.gradient mag. [OVERFLOW]
Shock Finder [OVERFLOW]
Shock Filter [OVERFLOW]
Shock Finder [OVERFLOW] [Isentropic Transient]
Shock Finder [OVERFLOW] [Transient]
Shock Filter [OVERFLOW] [Isentropic Transient]
Shock Filter [OVERFLOW] [Transient]
OVERFLOW_REFMACH

and
Press.grad. Vectors [OVERFLOW]

Transient Data File Naming Convention
FieldView will recognize a transient sequence using OVERFLOW-2 file naming conventions (as
described in Transient Data), with .fvbnd files specified as either prefix.#####.fvbnd or
prefix.fvbnd (this latter option provides for the use of a single .fvbnd file over an entire transient
sequence).

Complete support has been provided for RESTARTS. Also, FVX can be used to read an OVERFLOW
dataset - please refer to Chapter 4 for an example.

DataGuideTM Support
Complete support has also been provided for DataGuideTM. This feature offers the benefit of signifi-
cantly reduced read-in times, and lowers the memory requirements needed to work with data. Note
however that if the -p1 switch is used when generating DataGuideTM files, we will not process any of
the additional Q variables or any of the newly derived functions.

Support for brk (brick) files
We have provided limited support for brick files. If the brkset.restart file exists in the current
working directory, this file is used by FieldView to define the Cartesian topology of the "off-body" grids
(or bricks). This file contains information which defines the topology of both "near-body" (curvilinear)
and brick grids. The full PLOT3D x-files contain the same information in complete nodal format.
During the course of a "normal" OVERFLOW-2 simulation, the brick grids are static. Therefore, Field-
View is able to only read the xyz coordinates of the near-body grids and use the Cartesian topology to
construct the bricks. This applies for both steady and transient datasets. Note that although the brick
topologies are static, their associated IBLANK arrays can change. Therefore, the full x-file must still be
read thru to update the IBLANK array properly. If the brkset.restart file is not present, the full
(unsteady) x-files must be used instead.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 52

Table of ContentsIndex

For the case of transient, the brk files follow a naming convention for which the time step number is
specified as a numeric string suffix, i.e. brkset.###. FieldView handles this as follows. If the grid
file name ends in a number, we will look for a matching brkset file, and not use the brkset.restart
file.

Transient OVERFLOW-2, Adaptive (Changing) Grids
Data in which grids or node count change during a transient sweep is permitted only for OVERFLOW-
2 (and PLOT3D) files. Other types of structured data input (including plugin readers) are not supported
in this way. Note that earlier versions of FieldView required that you have a FieldView Boundary
(.fvbnd) file for each time step for cases like this.

In this scenario, FieldView will prohibit use of the Computational Surface Panel. To work with I, J, and
K visualization objects, you can create FieldView Boundary files (.fvbnd) for each time step to repre-
sent I, J, and K ranges as Boundary Types. For instance, consider a case where your grid file has the
name, grid.001. Then, if your boundary surface in grid.001 is composed of:

grid 1, K = 1, I = 20 thru 30, and J = 10 thru Max
grid 2, K = 1, I = 10 thru 15, and J = 15 thru Max

The Boundary file grid.001.fvbnd would look like:
FVBND 1 4
My Boundary Name
BOUNDARIES
1 1 20 30 10 $1 1 F 0
1 2 10 15 15 $1 1 F 0

Further detail concerning the .fvbnd format can be found in Appendix H

This mode of operation is fully supported with RESTARTS. FVX also supports this mode of operation
implicitly. There are no special FVX commands needed to perform a transient sweep on a dataset with
a changing grid count.

The creation of DataGuideTM files are fully supported.

Grid subsetting is not supported for transient changing grid counts.

FieldView Parallel Support
The OVERFLOW-2 reader is completely compatible with FieldView Parallel. Also, full support has
been provided for Partitioned File Parallel. Note that PFPR has not been enabled for brick grids.

Additional Comments and Limitations
This reader is limited to read only the OVERFLOW-2 format. Support for the older OVERFLOW format
is not covered with this reader.

Correct surface grid integration for overset grid handling has not been included with this reader. This
shortcoming will be addressed in a later FieldView release.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 53

Table of ContentsIndex

Command line values for the specific heat ratio, -gamma, and the ideal gas constant, -gasconstant,
will be ignored when an OVERFLOW-2 dataset is read into FieldView.

Dataset sampling does not support the additional Q variables present in OVERFLOW-2 files.

The number of species that this reader can support is currently limited to 20.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 54

Table of ContentsIndex

PHOENICS - BFC Data
(www.cham.co.uk)
This data reader will read in files from the PHOENICS program from CHAM (Version 1.6.5 to Version
2.2.1). Both a grid file and a restart file (PHI file) are required. Please note that these files may not be
in direct access format. 2D data is fully supported. Note: Non-Cartesian files are not supported by this
reader.

This reader is currently accessed from the fly-out menu in the Data Input pulldown menu, when you
select the More Readers... option.

Translator
A Windows NT utility program, phoplt3d.exe is available that converts PHOENICS PHI(DA),
XYZ(DA) and, optionally, EARDAT files, into PLOT3D file formats which can be read into FieldView.
The utility program phoplt3d.exe is a binary executable that will only run on a Microsoft Windows
NT 4 operating system (SP 3 or higher). There is no UNIX version of this utility. This executable and
accompanying documentation (FV_PHOENICSwininstructions.pdf) are available in the /PHOE-
NICS directory of the /translators directory on the FieldView Installation Disc. These files will
need to be manually copied from the FieldView Installation Disc as the /translators directory is
not automatically installed.

PHOENICS - non-BFC Data
(www.cham.co.uk)
This data reader will read in files from the PHOENICS program from CHAM (Version 1.6.5 to Version
2.2.1). Only the restart file (PHI file) is required. The data reader will use this file as both the grid and
results file. Please note that this file may not be in direct access format. 2D data is fully supported.
See above for translator information.

This reader is currently accessed from the fly-out menu in the Data Input pulldown menu, when you
select the More Readers... option.

http://www.cham.co.uk
http://www.cham.co.uk

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 55

Table of ContentsIndex

PLOT3D
The PLOT3D format is a standard file format for structured grids developed by NASA. A complete
description of this format and various aspects of using it in FieldView can be found in Appendix B and
Appendix C of this Reference Manual.

Note: When cylindrical coordinates are specified using an FVREG file (Region definition),
then XYZ information is presented to you in FieldView as RTX/Z (Radius, Theta, X/Z) data.
That is, Coordinate surface sliders, the 2D plotting system, Point Probing, Streamline seed-
ing, Exporting (except for Streamline export, which still uses XYZ coordinates), etc. will be in
RTX/Z coordinates instead of the usual XYZ coordinates. See Chapter 3 of this Reference

Manual for more information. Note that the Grid file itself is still required to be in XYZ coordinates.

Transient PLOT3D Data
FieldView supports transient PLOT3D datasets. Transient PLOT3D data requires one file per time
step for at least the results (Q or Function files). Multiple Grid (XYZ) files are only required if the grid is
moving or otherwise changing. This is different from other solvers (FLOW-3D®, for example), where
all data resides in a single file. One advantage of this technique is that it can be far quicker to access
a specific time step during visualization.

A dataset will automatically be recognized as transient if each file has a time step number embedded
in its name using a convention described in Transient Data. A transient dataset can consist of a single
Grid (XYZ) file and multiple Q or Function files (or both, at one each per time step), or, for moving grid/
changing geometry configurations, multiple Grid (XYZ) files and multiple Q or Function files (one per
time step). The actual extension (*.bin, *.dat, *.xyz) used is not important and is not required.
Multiple extensions are permitted.

Example: (moving/changing grid)
Grid file: grid0010.bin, grid0020.bin, grid0030.bin, …, grid4030.bin
Q file: q0010.bin, q0020.bin, q0030.bin, …, q4030.bin

For this example, when any one of the grid files is chosen during read-in, FieldView will find similarly
named files in the same directory and allow the option of treating this case as a transient case, listing
the number of files found similarly named. If you do not decide to treat it as a transient set, then the
dataset will be treated as non-transient. If you do decide to treat it as transient, FieldView will store
the names of all of the grid files, but only read-in the one chosen. It will, however, allow access to the
other time steps through use of the Transient Data Controls panel (see Chapter 14 of Working with
Fieldview for more details). If a different Q file (different time step) is chosen during the next phase of
the data read-in, then the appropriate Grid file will be accessed as well.

Note: If you have multiple grid files, you must read in the same result file (time step) as the
grid file chosen. (If you choose a different results time step, FieldView will issue a message
and force loading of the correct time step.) Once data is read in, using the Transient Data
Controls panel to select any given time step will always result in proper matching files.

Merge Series

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 56

Table of ContentsIndex

For Merge Series, a series of 2D files (or 3D files with one of the dimensions equal to 1) may be read
in as time steps of a solution. The files will be appended together in the K dimension (or in the dimen-
sion that is equal to 1, for 3D solutions).

Example: (non-moving/non-changing grid)
Grid file: case4.xyz
Q file: case4_1020.q, case4_1021.q, case4_1022.q, …, case4_1335.q

For this example, when the Grid file is read in, there will be no other similarly named *.xyz files.
Hence, FieldView will not present any transient pop-ups. However, when a Q file is chosen, Field-
View will recognize the series and present the options. If you decide to treat the series as transient,
the time step picked will be the data immediately available in FieldView, but all time steps accessible
through the Transient Data Controls panel (see Chapter 14 of Working with Fieldview for more
details).

See the Basic Aerospace Tutorial, the Basic Combustion Tutorial and the Basic Turbomachinery
Tutorial in the User’s Guide for more information on working with PLOT3D data.

Transient PLOT3D, Adaptive (Changing) Grids
Data in which grids or node count change during a transient sweep is permitted only for PLOT3D (and
OVERFLOW-2) files. Other types of structured data input (including plugin readers) are not supported
in this way. Note that earlier versions of FieldView required that you have a FieldView Boundary
(.fvbnd) file for each time step for cases like this.

In this scenario, FieldView will prohibit use of the Computational Surface Panel. To work with I, J, and
K visualization objects, you can create FieldView Boundary files (.fvbnd) for each time step to repre-
sent I, J, and K ranges as Boundary Types. For instance, consider a case where your grid file has the
name, grid.001. Then, if your boundary surface in grid.001 is composed of:

grid 1, K = 1, I = 20 thru 30, and J = 10 thru Max
grid 2, K = 1, I = 10 thru 15, and J = 15 thru Max

The Boundary file grid.001.fvbnd would look like:
FVBND 1 4
My Boundary Name
BOUNDARIES
1 1 20 30 10 $1 1 F 0
1 2 10 15 15 $1 1 F 0

Further detail concerning the .fvbnd format can be found in Appendix H.

This mode of operation is fully supported with RESTARTS. FVX also supports this mode of operation
implicitly. There are no special FVX commands needed to perform a transient sweep on a dataset with
a changing grid count.

The creation of DataGuideTM files are fully supported.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 57

Table of ContentsIndex

Grid subsetting is not supported for transient changing grid counts.

Double Precision PLOT3D Data

Face Data for PLOT3D Data
FieldView supports face-based results on boundary surfaces of PLOT3D data. In order to provide
face results for a 3D dataset, three additional files will need to be created. The first is a special form of
the Structured Boundary file (*.fvbnd) which communicates the boundary surface definitions, the
surface normal directions, and whether there are face results for each of the boundary surfaces. The
format is described in Appendix H of this Reference Manual. The second is a 2D Function File,
which contains the face results for those boundary surfaces that have them and the third is a Function
Name file which communicates the names of the face result variables to FieldView. See the Face
Results sections of Appendix H of this Reference Manual.

FieldView supports the Double Preci-
sion (DP) Unformatted format (in addi-
tion to Formatted, Unformatted and
Binary PLOT3D formats). DP Unfor-
matted files store floating point results
data in double (64 bit) precision. This is
true for XYZ files, Q files, Function
Files, and Surface Based results files.
All integer data for DP Unformatted files
is stored in single (32 bit) precision.

Use DP Unformatted toggle button in
the FILE FORMAT section of the
PLOT3D Data Input panel to read DP
Unformatted files.

 Figure 31 PLOT3D Data Input

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 58

Table of ContentsIndex

SC/Tetra
We recommend that this direct reader be used to read SC/Tetra datasets from Software Cradle Co.,
Ltd. Exporting results to the native FieldView unstructured file format is not required.

To read a SC/Tetra dataset, start by selecting the Read Grid & Results Data... button on the Data Input
panel (see Figure 32). You will be presented with a file browser which will let you navigate to the loca-
tion of the dataset that you wish to read.

 Figure 32 SC/Tetra [Direct Reader] Data Input Panel

 Figure 33 SC/Tetra [Direct Reader] File Browser

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 59

Table of ContentsIndex

Automation for the SC/Tetra direct reader is completely supported with Restarts, FVX and Python
scripting.

Known Limitations
• Parallel operation is not currently supported for this direct reader.
• Transformed grid transient cases will read correctly, however the grid will appear to be stationary

instead of moving.

scFLOW
This direct reader may be used to read scFLOW datasets from Software Cradle Co., Ltd. This reader
has native support for arbitrary polyhedra, moving grids, overset grids, nodal and face based results.

Automation for the scFLOW direct reader is completely supported with Restarts, FVX and Python
scripting.

Known Limitations
• Parallel operation is not currently supported for this direct reader.

SCRYU
(www.cradle.co.jp)
This program (available in Japan, and now more recently in North America) has an export to a file for-
mat which is directly read-able by the SCRYU Reader.

scSTREAM
We recommend that this direct reader be used to read sc STREAM datasets from Software Cradle
Co., Ltd. Exporting results to the native FieldView unstructured file format is not required.

 Figure 34 scSTREAM [Direct Reader] Data Input Panel

http://www.cradle.co.jp

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 60

Table of ContentsIndex

To read a sc STREAM dataset, start by selecting the Read Grid & Results Data... button on the Data
Input panel (see Figure 34). You will be presented with a file browser which will let you navigate to the
location of the dataset that you wish to read.

Automation for the scSTREAM direct reader is completely supported with Restarts, FVX and Python
scripting.

Known Limitations
• Parallel operation is not currently supported for this direct reader.

 Figure 35 scSTREAM [Direct Reader] File Browser

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 61

Table of ContentsIndex

Surface Sampled Data
This reader is used to read FV-UNS files written by surface sampling. For information, see Surface to
Surface Sampling for Dataset Comparison in the FieldView Reference Manual.

STL
This reader lets you read in STL (Stereolithographic) CAD data, allowing you to show the original CAD
representation of your model. Independent scaling and translation of any dataset allows you to show
your STL CAD data alongside your CFD simulation results in the same postprocessing session.

To read an STL file, select the STL [Direct Reader] entry from the Data Input pulldown menu. On the
STL [Direct Reader] panel, click Read Grids & Results Data... When you do this, you will see a file
browser, as illustrated below.

 Figure 36 STL [Direct Reader] Data Input Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 62

Table of ContentsIndex

NOTE: The STL file browser is case-insensitive. However the STL [Direct Reader] in FieldView
expects that extensions .stl and .STL are two different formats ("stl" and "stlbin", respetively), and if the
incorrect extension is used for the given file type, the file will fail to read, and FieldView will issue Input
File Error message.

UH3D
This solver is designed for vehicle front end cooling analyses. The code was originally developed by
Core Technologies in the Ford Motor Company, with commercialization and development supported by
MindWare Engineering. Reader modules are available for grid and results volume data and for the
UH3D geometry data. To enable the reader, launch FieldView with the "-uh3d" command line
option. Contact Tecplot Inc. directly for additional details on this reader.

 Figure 37 STL [Direct Reader] File Browser

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 63

Table of ContentsIndex

ultraFluidX
FieldView supports reading results from the Lattice Boltzmann solver ultraFluidX. This reader has
been optimized for transient datasets where grids are not moving, making rebuilding of the grid data
unnecessary when changing timesteps. Also, starting with FieldView 20, this reader supports cases
with moving grids, as well as a changing number of elements and nodes over time.

The Data Input menu entry "ultraFluidX [Direct Reader]..." (see Figure 11) will bring up the panel
below.

 Figure 38 UH3D Reader port for WINDOWS

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 64

Table of ContentsIndex

To read ultraFluidX results, use a parallel data input mode (such as "Local Parallel") to load the uFX-
_output.layout file generated by ultraFluidX, as seen in Figure 40.

 Figure 39 ultraFluidX [Direct Reader] panel

 Figure 40 FieldView results read operation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 65

Table of ContentsIndex

Next, the Function Subset Selection panel will be displayed. This allows reading only a subset of the
variables stored by ultraFluidX.

Finally, the Time Step Selection panel allows selecting a particular time step to be the first one to be
read. All time steps will later be accessible through the Tools > Transient Data… menu.

Alternatively, the dataset can be read as a steady state case by selecting “Read as Steady State”. In
that case, only the selected time step will be available.

 Figure 41 Function Subset Selection panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 66

Table of ContentsIndex

How to read distributed results from ultraFluidX? (Recommended approach)
ultraFluidX outputs volume results in a distributed manner per rank, so one *.bcf file per rank (uFX-
_output_RANK#.bcf, with # being the number of the rank) will be created in the subfolder uFX_-
fullData, together with the mesh and result files for all the saved time steps. To allow reading all
these *.bcf files in a single operation, ultraFluidX also writes a so-called FieldView Layout file
(uFX_output.layout) that groups the *.bcf files. In order to read this layout file, the “Local
Licensed Parallel” option (from the File > Data Input menu) or a parallel Server Configuration file must
be selected. FieldView will fail to read the layout file if the default File > Data Input > Direct mode is
selected. The benefit of reading distributed results in parallel is that it will be faster than reading the
same case in a merged form, and many FieldView operations will benefit from parallelization in the
same way. Please note that there is no need to match the number of FieldView worker processes
with the number of ranks used by ultraFluidX. For more on running FieldView in parallel, please see
FieldView Parallelization with Multithreading and MPI in Chapter 1 of the User’s Guide.

ultraFluidX also outputs distributed surface results in the subfolder uFX_surfaceData, with the
respective *.bcf and layout files. These results can either be read separately or appended to the
volume results in a single FieldView session by selecting the “Append” option seen on Figure 39. The
read procedure described above for volume results applies to surface results.

How to read merged results from ultraFluidX?
Optionally, ultraFluidX can write a copy of the volume and surface results with all the ranks merged into
single files. When that is the case, one *.bcf file will be written for the volume results, and one for

 Figure 42 Time Step Selection panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 67

Table of ContentsIndex

the surface results. These results can only be read in serial mode, with File > Data Input > Local Serial
(Direct), or a with serial Server Configuration being selected. FieldView cannot read them in parallel.

ultraFluidX also has a number of optional exports that can be read in FieldView with the same proce-
dure as described above for merged results, by selecting the corresponding *.bcf file.

• Section cuts will be exported to a separate subfolder named uFX_sectionCuts
• Partial surfaces will be exported to uFX_surfaceData, in the subfolder uFX_partialSur-
face_name

• Partial volumes will be exported to uFX_volumeData, in the subfolder uFX_partialVol-
ume_name

VTK
As VTK is supported by many CFD solvers, this reader will provide FieldView users with an additional
interface option. VTK also has the advantage of including formats for 2D surfaces and solutions, as
well as 3D meshes, making it an alternative to XDB files for extract based workflows. With this reader,
users who have configured their solvers for writing VTK extracts, sometimes using in situ, will have the
option to analyze their results in FieldView.

The FieldView Data Input menu (Figure 11) includes two entries for reading VTK files:

VTK Structured...
VTK Unstructured/Hybrid...

The Structured reader maintains the structured nature of the dataset, giving access to structured spe-
cific capabilities in FieldView, such as Computational Surfaces, structured surface plots, etc. The
Unstructured/Hybrid reader is capable of reading unstructured cell data, face or polygon data, and
structured data, which is converted to unstructured cells. It can thus read a wider range of VTK files,
but doesn't preserve the nature of structured grids.

Both the structured and the unstructured/hybrid readers are capable of reading VTK_STRUC-
TURED_GRID and VTK_RECTILINEAR_GRID geometries, but only the unstructured/hybrid reader is
capable of reading VTK_UNSTRUCTURED_GRID and VTK_POLY_DATA geometries.

VTK is made of a wide variety of formats, most of which are supported by FieldView. More specifi-
cally, FieldView can read:

• Structured files ending in "s", "r" or "i" (.vts, .vtr, .vti)
• Unstructured files ending in "u" or "p" (.vtu, .vtp)
• Structured or unstructured legacy files with the extension .vtk
• Structured, unstructured or hybrid (both) multi-block legacy files with the extension .vtm
• Parallel partition files with extensions that start with "p" (e.g., .pvtu)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 68

Table of ContentsIndex

A .vtm file is a metadata file, containing a set of files of types already mentioned. The Structured
reader will read only the structured grids in a .vtm file. The Unstructured/Hybrid reader will read all
grids, converting structured to unstructured.

Like a .vtm file, a VTK parallel partition file is a metadata file, with a separate grid in each file. Meta-
data files, including .vtm and parallel partition files, can be read as multi-grid parallel, which will
reduce read time but is not a requirement.

Multi-file transient is enabled. For information on multi-file transient naming conventions, please refer
to the Transient Data section.

Both the structured and the unstructured/hybrid readers support IBlanking information from the vtk-
GhostType scalar if it exists.

An attempt to read data not supported by one of the VTK readers will produce a console message
such as:

VTK reader: data type vtkUnstructuredGrid is unstructured
 and is not supported by the structured reader.

There is nothing in the format that presents itself as boundary types, so all 2-D elements are collected
under a single boundary "default".

VTK may specify results at nodes or at cell centers. Any results at cell centers are interpolated to
nodes for FieldView, except in the case of face-based boundary results, where the results will be pres-
ent in both face-centered and nodal variations. The face-centered results for boundary surfaces will
have a variable name suffix "[BNDRY]".

Limitations
Point set geometries are not supported.

Vertex and line element types are not supported. VTK_PENTAGONAL_PRISM and VTK_HEXAGO-
NAL_PRISM element types are not supported. When any of these are encountered, a console mes-
sage will be issued to that effect and the unsupported elements are otherwise skipped.

WIND US
The WIND US plugin reader has been provided as a courtesy of the NPARC Alliance. A version of this
plugin has been included in FieldView and is supported for the LINUX64 platform only. To learn more
about the capabilities of this reader, documentation is available at http://www.grc.nasa.gov/WWW/
winddocs/ To obtain the latest version of this plugin reader, please contact the NPARC Alliance
directly at (nparc-support@arnold.af.mil <mailto:nparc-support@arnold.af.mil>).

The WIND US plugin contains two readers, one for Structured Common Files and the other for
Unstructured Common Files. Full support for RESTARTS and FVX is provided.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 69

Table of ContentsIndex

To read WIND .cgd (grid) and .cfl files, start by selecting either the WIND (Structured Common File) or
WIND (Unstructured Common File) entry on the Data Input pulldown menu. On the data input panel,
click Read Grid Data... When you do this, you will see a file browser which will let you navigate to the
location of the .cgd file that you wish to read. After you select the file you want to read, click the Open
button. When this is done, a second file browser is launched to allow you to read the .cfl file. Field-
View automatically attempts to locate the matching .cfl file for the .cgd file which has already been
read. If a matching file is found, it will show up in the Filename section of the file browser. You can
read this data file by clicking the Open button. It is also possible to read a different .cfl file by brows-
ing to the results file of interest. Although file filters have been implemented to make locating .cgd
and .cfl files easier, they can be easily over-ridden to select datasets saved with different suffixes.

A common file can handle both structured and unstructured grids in the same file (or simulation). If a
Common File of this type is read using the Structured reader, the unstructured zones are skipped. If it
is read using the Unstructured reader, the structured grid cells are converted to unstructured cells and
both grid and solution are read. When the Unstructured reader is used to read structured data, compu-
tational surfaces are not available. Also, structured grid boundaries will not be available. Conse-
quently, when reading a hybrid dataset, it may be beneficial to read it twice; once using the Structured
reader to display the boundaries, and again using the Unstructured reader to calculate streamlines
and/or display iso-surfaces.

It is a requirement that you have write permissions to the directory that contains the dataset(s) you are
attempting to read. This is because FieldView will automatically create a structured boundary file
(.fvbnd). If your dataset is called my.cgd, then the corresponding name of the structured boundary
file will be my.cgd.fvbnd. If you do not have write permissions, FieldView will issue the following
message:

Failed to write structured boundary file

and the .fvbnd file will not be generated. In addition, if an older .fvbnd file (with the same name)
already exists and the user does not have file permission to overwrite it, the boundary information may
be incorrect and will not be read in if the grid information found in this older .fvbnd file is different than
that for the current grid.

If you want to disable the writing of the structured boundary file, the environment variable FV_NO_BN-
DRY_FILE needs to be set (to any value).

Transient results, stored as one file per time step, are automatically recognized, based on the standard
FieldView naming conventions.

Multi-grid datasets can be read on the LINUX64 platforms using Local Parallel, or using your own
server configuration file. Since this is a fully integrated plugin, it is possible to read WIND data from
any FieldView Client using a server configuration file for a LINUX64 system.

An update to the formula restart file, wind.frm, is installed in the /fvx_and_restarts directory of
your FieldView installation. We recommended that this formula restart gets read after reading any
WIND data since it provides many additional scalar and vector functions to examine your data.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 70

Table of ContentsIndex

Several environment variables are available to provide additional control over how WIND data is read
and displayed in FieldView.

XDB Import
FieldView is able to import as well as write XDB files. There are essentially four types of XDB files:

1. Steady state, which is a snapshot of all surfaces and rakes

Variable Definition
FV_UNSTR_CGD_SURFSONLY Set this variable to read only unstructured boundaries for

faster loading. When this is set, it will not be possible to cre-
ate surfaces or rakes within the dataset volume.

FV_UNSTR_CGD_BC Define boundary type names based on their respective
boundary conditions rather than the surface IDs. Boundary
Surface restarts will be affected by this setting.

FV_UNSTR_COUPLEDSURFS Omit coupled surfaces from returned boundary surfaces.
Boundary Surface restarts will be affected by this setting.

FV_UNSTR_CGD_NOPRISMLAYER By default, an internal boundary surface is created which
contains all triangular faces having a prism on one side and a
non-prism on the other. Set this to omit defining the edge of
your prism layer as a boundary surface.

FV_UNSTR_CGD_STRUCTCONVERT Convert structured zones to unstructured format (Note
applies to volume information only, no boundaries are
defined).

FV_UNSTR_CGD_METRIC The specification of consistent units needs to be done when
setting up the solver. Set this variable to provide grid and
solution variables in MKS rather than FSS units.

FV_UNSTR_CGD_UNITS Provide grid units using native units created by the grid gen-
erator and based on the underlying problem geometry. Flow
variables are displayed using FSS units. This may introduce
an inconsistency in displaying results. The computation of
streaklines for transient cases may be affected by this set-
ting.

FV_UNSTR_NOGROUP It is possible to create a named collection of structured or
unstructured surfaces. Surfaces can be still be manipulated
using their Boundary Type names. Set this to ignore surface
group definitions in boundary surfaces. Boundary Surface
restarts will be affected by this setting.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 71

Table of ContentsIndex

2. Surface sweep, containing a sweep of a coordinate, computational or iso-surface (and possibly
other surfaces)

3. Transient sweep, saving each time step to an individual file to create a series of files.

4. Transient sweep, which is a sweep saving all timesteps to a single file. This requires that the envi-
ronment variable FV_USE_FV13_XDB_FORMAT be set.

An XDB file is imported from the Data Input menu. XDB imports can be read directly or remotely using
FieldView Client Server. XDB files can not be imported using parallel servers unless read via PFPR
Partitioned File Parallel Reader (PFPR) layout files. However XDB files tend to be small and can be
efficiently read without the need for parallel. This menu is also where you can select Local Parallel or
your own custom server configuration as explained on page 19 in the Installation Guide.

The XDB reader has been extended in FieldView 19 to support the new XDB format introduced with
XDBLib 2.0 (only supported on Linux64). XDBLib 2.0 is FieldView's solution for in situ post-process-
ing. It's a library that allows solvers with native in situ post-processing and the ones instrumented for
in situ thanks to libsim, which writes directly to XDB extracts, without having to write full 3D datasets.
This is particularly interesting for large and transient simulations, for which full 3D mesh and results are
too large and take too long to process. If you're interested into getting access to the XDBLib 2.0 library
or in getting help in instrumenting your solver for in situ post-processing, please contact Tecplot Inc..

Once an XDB file has been read, it can be managed just like any other dataset in FieldView. XDB
datasets can be manipulated in the following ways:

1. Datasets can be scaled, rotated, translated, mirrored or rotationally duplicated

2. Multiple copies of a surface can be created; each surface can be independently transformed,
scaled and/or rotated

3. 2D plots can be created on surfaces; surfaces can be probed

4. XDB datasets can be appended and Dataset Comparison can be used

5. Linked Surface sweeps and Merged Transient sweeps can be performed

6. Geometric functions (such as X, Y and Z) no longer need to be saved when creating XDB files.
They are automatically available when the dataset is read, and can be used to threshold surfaces.

7. Vector components no longer need to be saved when creating XDB files. If a vector quantity is
saved, all components of the vector will be available to be used for scalar coloring and threshold-
ing.

8. New XDB extracts can be created from XDB datasets (useful for limiting time ranges for example)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 72

Table of ContentsIndex

Although information is available within the XDB files to describe what they were originally, all surfaces
are stored as boundary types. A boundary type naming convention has been established to create
some correspondence between the original surface type and its name within the XDB file. In general,
the first part of the boundary type name corresponds to the type of surface it was originally derived
from. The remaining part of the name attempts to provide additional context for that surface up to an
80 character limit.

For further information on XDB Imports, see XDB Workflows for CFD in Working with FieldView.

Partitioned File Parallel Reader (PFPR)
The Partitioned File Parallel Reader can read all supported FieldView formats except PW Common
File. As a result, you can create a FieldView layout file to read multiple XDB files, for example.

Please note that the DataGuideTM feature is also supported. DataGuideTM files can be created for
each individual FV-UNS or PLOT3D file, specified in the layout file.

In addition to interactive reading, FieldView Restarts and FVX are fully supported.

Important points and limitations
You must be running a FieldView parallel shared memory (shmem) or cluster (p4) server.

The layout file must be visible to the controller FieldView server process on the target system.

The name of the layout file is arbitrary, except for the usual rules for transient filenames (see below). It
is recommended that a file extension, *.layout, be used to help you more easily identify layout files,
but this is not a requirement at this time.

Parallel data readers, including PFPR, do not support the following FieldView features:

Dataset Sampling
Create Wall Boundaries
Create Exterior Boundaries

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 73

Table of ContentsIndex

Description of Layout File Format
Layout files are text files with the following general format:

FIELDVIEW LAYOUT 1
Base filename of first partition file
Hostname
Directory of first partition file on this machine
Base filename of second partition file
Hostname
Directory of second partition file on this machine

A drawback of this format is that it is not flexible enough in working with job schedulers. To overcome
this limitation, wildcards are allowed to be used for the Hostname specification. A layout file may look
like this:

FIELDVIEW LAYOUT 1
Base filename of first partition file
*
Directory of first partition file on this machine
Base filename of second partition file
*
Directory of second partition file on this machine

It is possible to provide a mix of wildcards and hostnames if desired.

The "Directory" entry for a partition can be relative to the directory containing the layout file. For exam-
ple, if the Directory entry is ".", the partition is assumed to be in the same directory as the layout file. If
the Directory entry is "GridFiles", the partition is assumed to be in a directory called "GridFiles", which
is a sub-directory of the layout file's directory.

Relative pathnames in layout files make them more portable. You can move the layout file and the rel-
ative partitions to a different parent directory, without having to edit the layout file.

No comment lines are allowed.

No leading spaces (blanks) are allowed.

If the unstructured data has separate grid files and results files, then there must be a layout file for the
grid partitions and a separate layout file for the results partitions.

For PLOT3D data, there must be a layout file for the grid files, the Q files, and the function files if they
are present.

The hostnames in the layout file must all belong to the current MPI group, but these names can be
wildcarded using "*". The same hostname can occur multiple times in the layout file. Having a greater

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 74

Table of ContentsIndex

or lesser number of partitions than available server processes is allowed. Having more partitions than
server processes is referred to as "overload".

Grid numbering is as follows after reading partitioned data: All of the grids from the first partition file
come before all of the grids from the second partition file, and so on.

For transient partitioned data, there must separate layout files for each time step. The layout file-
names must follow the standard FieldView naming conventions for time step files:

basenameNNN.extension
- or -

basenameNNN

If there are separate grid and results layout files, the results layout files can be transient while the grid
layout file is not, as with non-partitioned data.

Simple Layout File example
For a dataset made up of two partitions, where each partition is located on a different file system, the
layout file is:

FIELDVIEW LAYOUT 1
cyl.A.UNS
gecko
/nfs/tmp/mydata/cyl_vib
cyl.B.UNS
lizard
/nfs/tmp/my_other_data/cyl_vib

Limitations:

• FieldView requires that all partitions of each dataset have identical lists of solution variables and
surface based (boundary) variables.

• The partition count across a transient set of PFPR layout files can not vary. If they vary, you will see
the following error:
Time Series Rejected: Mismatch in the number of partitions.
All Layout files in a potential time series must specify the same number
of partitions.

• The number of partitions per FieldView "worker" process may not exceed 1342. If exceeded, you
will see the following error:
Partitioned File Error:
The number of partitions in the Layout file exceeds the maximum (1342)
that can be read per process. Try running the server with more processes.
The data file has not been read: <path>file.layout

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 75

Table of ContentsIndex

Detailed PLOT3D PFPR example

For this example, we will provide detail on the layout files needed to read a PLOT3D double precision
unformatted grid and Q file which has been saved using 8 separate partitions. This PLOT3D dataset
also has boundary surfaces associated with it, and, these boundary surfaces also have face based
results (one value per element) stored on them.

In the figure above, the relationship between the layout file, the partitions, the grids, and the boundary
surfaces is shown. Note that there are a varying number of grids stored in each partition. As noted
previously, this particular problem also has several boundary types identified, namely blade01,
blade02 and blade03.

Boundary type blade01 has computational surfaces in partitions 3, 4 and 5,
Boundary type blade02 has computational surfaces in partitions 2, 6 and 7, and,
Boundary type blade03 has computational surfaces in partitions 1, 3 and 8.

Note that boundary types can span different partitions - FieldView is capable of correctly merging the
computational surfaces together. Also note that one partition, partition 3, has computational surfaces
which belong to two different boundary types.

 Figure 43 PLOT3D PFPR example for 8 partitions

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 76

Table of ContentsIndex

The layout file used to read this partitioned case into FieldView is named ovr_grid.layout. The
fvbnd file used to define the boundary surfaces and to specify the presence of surface based results is
named ovr_grid.layout.fvbnd, listed below:

FVBND 1 4
blade01
blade02
blade03
BOUNDARIES
1 1 1 $ 1 $ 1 1 T 1
1 14 1 $ 1 $ 1 1 T 1
1 44 1 $ 1 $ 1 1 T 1
2 15 1 $ 1 $ 1 1 T 1
2 17 1 $ 1 $ 1 1 T 1
2 13 1 $ 1 $ 1 1 T 1
3 3 1 $ 1 $ 1 1 T 1
3 41 1 $ 1 $ 1 1 T 1
3 29 1 $ 1 $ 1 1 T 1

Before you attempt to read this dataset into
FieldView, make sure that you have started a
parallel server.

The general recommendation for best perfor-
mance for reading any partitioned dataset is
that the number of server processes needed is
equal to one plus the number of partitions. So,
in this case, one plus eight partitions means
that np must be set to 9 in your parallel server
config file. However, it is possible to read a
partitioned dataset with fewer processes than
partitions. Overloading the Partition File Par-
allel reader is discussed in further detail below.

Once you have started your parallel server,
you can proceed to read the ovr_grid.lay-
out layout file into FieldView as follows.
From the PLOT3D Data Input panel, select DP
unformatted as the file format, and turn on
Multi-Grid and Iblanks in the Data Format sec-
tion. Next, browse to select this file and hit OK.

From Figure 43, note that there are boundary surfaces defined for each of the 8 partitions making up
this dataset. And, note from the FVBND listing that there are surface based results for each computa-
tional surface. What this implies is that we must have a file containing surface based results for each
partition. These surface based results files are associated with the volume results or Q files through

 Figure 44 Reading a PLOT3D PFPR layout file

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 77

Table of ContentsIndex

the standard naming convention of adding .fvsrf. For this specific example, the Q files and surface
based results files for each partition are:

myq.01of08.unf myq.01of08.unf.fvsrf
myq.02of08.unf myq.02of08.unf.fvsrf
myq.03of08.unf myq.03of08.unf.fvsrf
myq.04of08.unf myq.04of08.unf.fvsrf
myq.05of08.unf myq.05of08.unf.fvsrf
myq.06of08.unf myq.06of08.unf.fvsrf
myq.07of08.unf myq.07of08.unf.fvsrf
myq.08of08.unf myq.08of08.unf.fvsrf

The layout file for the results, ovr_q.layout, is very similar to the grid layout file. Since the file nam-
ing convention automatically associates the surface based results with the correct computational sur-
face within each grid in the matching partition, these results are automatically read.

Finally, it is a requirement that the names of the surface based results must be the same for each par-
tition. As a result, only one surface based results name file is needed. This file must follow the stan-
dard naming convention, ovr_q.layout.fvsrf.nam, in order to be read when the ovr_q.layout
is read. The listings for the ovr_q.layout and ovr_q.layout.fvsrf.nam are provided below:

FIELDVIEW LAYOUT 1
myq.01of08.unf
myhost
/usr2/QA/p3d
myq.02of08.unf
myhost
/usr2/QA/p3d
myq.03of08.unf
myhost
/usr2/QA/p3d
myq.04of08.unf
myhost
/usr2/QA/p3d
myq.05of08.unf
myhost
/usr2/QA/p3d
myq.06of08.unf
myhost
/usr2/QA/p3d
myq.07of08.unf
myhost
/usr2/QA/p3d
myq.08of08.unf
myhost
/usr2/QA/p3d

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 78

Table of ContentsIndex

Density (Q1)
x-momentum (Q2)
y-momentum (Q3)
z-momentum (Q4)
stagnation-energy (Q5)

Partition File Parallel Reader Overload
The fundamental requirement of a dataset in order for it to show any scaling performance with Field-
View Parallel is that it must be made up of multiple grids. Datasets having multiple grids can have one
of two file structures: Either all of the grids are stored in a single file or multiple files, each containing
one or more grids, are used to partition the dataset. FieldView is capable of reading data and creating
surfaces/rakes for both file structures. For optimized operation on partitioned datasets with relatively
few partitions, FieldView can read one partition (or file) for each worker server process, as illustrated
on the left.

However, for partitioned datasets with hundreds of grids, it may be more practical to run FieldView in
an overloaded mode, where each worker server is capable of reading more than one partition, as illus-
trated on the right. Overloaded operation for partitioned file parallel also overcomes the situation in
which your parallel license provides for fewer processes than partitions. Overload operation is auto-

 Figure 45 Partition File Parallel Operation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 79

Table of ContentsIndex

matic and requires no special settings. No changes to existing layout files, RESTARTS and FVX pro-
grams are needed.

Exports to FieldView Formats

AcuSolve
(www.altair.com)
A translator is available within AcuSolve to export results to the FieldView Unstructured File Format.
Support is provided for split grid and results file formats. This is particularly useful for cases in which
the grid data does not change with respect to time. Consequently, it is possible to save the grid file
only once (for a transient sequence), and then save just the results data for each time step in the
series. The export of FieldView Unstructured Files can be automated within AcuSolve.

CFD-ACE
(www.esi-group.com)
An export to the PLOT3D file format is available from this solver. This file format can be read directly
into FieldView. Please review the documentation for this solver to find out more information concern-
ing the export to the PLOT3D file format.

CFX
(www.ansys.com)
CFX data must be exported to the FieldView Unstructured data format in order to be read. This export
capability is available with CFX.3 and later. CFX is a finite volume based solver. The Field-View
Unstructured data format is nodal based. Interpolation from the cell centers to the nodes is carried out
by CFX during the export process. This interpolation may sometimes lead to small errors when com-
paring integrated quantities such as mass flow rates or forces on boundaries.

All named boundaries within CFX will be included in the FieldView Unstructured File export. They are
accessible as Boundary Types on the Boundary Surface panel within FieldView.

To export data, you will use the CFX Solver Manager. From the main level menu, choose File… and
then select Export. This will bring up the Export Panel. On the export panel you can choose to read in
a CFX results file to be converted. If you have just obtained a problem solution, this field will already
be filled in. A default filename will have the extension .fv appended to it. Leaving the Export File
field blank will not result in a successful export and will produce an error.

The export utility offers several options. First, you can select a FieldView version to export to. The
range of choices is 6, 7 or 8. This is an effort on the part of CFX to match their export format with the
FieldView version. Strictly speaking this is incorrect and does not follow the revision versions of the
FieldView Unstructured File Format. All of these choices will create a file which can be read by any
version of FieldView starting from 6 on.

http://www.esi-group.com
http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 80

Table of ContentsIndex

Next, you can select an output level, ranging from 1 to 3. For a selection of 1, the number of scalars
written will be minimal, and this selection offers the advantage of creating the smallest export file. If
you select 3, this will produce the largest file, including nodal interpolated results for boundary scalars.

You can choose the option of: “Use Surface Data on Boundary Nodes.” The values at boundary
nodes are part of the solution that the CFX Solver calculates. The values at the boundary nodes are
dependent on the solution near these nodes. Hence, these values may be different than the specified
boundary conditions set by the user. The user has the option to output the solved boundary node val-
ues or the specified boundary condition values. If the “Use Surface Data on Boundary Nodes” button
is ON, then the boundary values are corrected and reset to the boundary condition values. If this
option is OFF, then the solved boundary nodes are used and exported to the file.

For quantitative calculations, we recommend that uncorrected values should be used. Exporting data
through the CFX Solver Manager as explained above uses corrected values by default (button is ON).
CFX is a finite volume based solver. Interpolation from the cell centers to the nodes for export to the
FieldView Unstructured File format is handled by the CFX Solver.

Exporting results for transient series will automatically create one FieldView Unstructured file for each
time step. It is possible to limit the range of exported time steps by making appropriate selections on
the Export panel.

COBALT
(www.cobaltcfd.com)
An option to export to the FieldView Unstructured File format is available directly within COBALT. This
export option supports the use of split grid and results files. This is particularly useful for cases in
which the grid data does not change with respect to time. Consequently, it is possible to save the grid
file only once (for a transient sequence), and then save just the results data for each time step in the
series. The export of FieldView Unstructured Files can be automated within COBALT.

COBALT is a finite volume based solver. Results are interpolated by COBALT to the nodes for export
to the FieldView Unstructured File Format. All boundary surfaces defined within COBALT will be writ-
ten out, and will be available as Boundary Types on the Boundary Surface panel within FieldView. On
these surfaces, face based, or non-interpolated results will also be available. These results can be
used for integrations of lift and drag - it is expected that these integrated results calculated by Field-
View will exactly match those values reported by COBALT.

http://www.cobaltcfd.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 81

Table of ContentsIndex

CONVERGETM

Native FV-UNS results, generated from the standalone post_convert program supplied by Convergent
Science, Inc., can be read directly into FieldView, as illustrated in Figure 46 below.

Volume data and spray combustion data, exported using the FieldView Binary Particle Set format, can
be visualized simultaneously. Transient cases are automatically recognized as such on read-in, and
time synchronization between the volume data and the spray droplet data is automatic.

 Figure 46 CONVERGE Internal Combustion Spray Modeling

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 82

Table of ContentsIndex

Note: The solution time field in the FieldView unstructured file is used to store the crank angle. Con-
sequently, an annotation with the escape sequence, %%T, can be used to show the crank angle, and
will update during a transient sweep.

To read CONVERGE results, start by selecting the Read Grid or Combined Data... button on the Data
Input panel (Figure 47). You will presented with a file browser which will let you navigate to the loca-
tion of the FieldView unstructured .uns file that you wish to read. For transient cases, you will see a
series of datasets. Selecting one of these datasets will be sufficient for FieldView to recognize the
series of data as transient.

 Figure 47 CONVERGE [FV-UNS Export] Data Input Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 83

Table of ContentsIndex

Once a file selection has been made, click the Open button. If the case is transient, you will see the
Transient confirmation popup, as illustrated in Figure 49.

To read spray droplet data, navigate to the Particle Paths visualization panel. Click on the Import...
button. The Particle Path Data Input panel will provide access to a file browser where a selection for a
particle path set can be made. This set of steps is illustrated in Figure 50 below.

 Figure 48 CONVERGE [FV-UNS Export] File Browser

 Figure 49 Transient Set Confirmation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 84

Table of ContentsIndex

Once a particle path set file has been read, it will be automatically synchronized in time with the vol-
ume data on the basis of the filename. Further details are provided in the Streaklines section of
Chapter 6.

Known Limitations
A parallel-compatible FieldView unstructured data format is currently not supported by the post_con-
vert export utility.

DROP3D
(www.ansys.com)
An export to the FieldView Unstructured File format is available from this solver. See the documenta-
tion for this solver to find out more information concerning this export

FENSAP
(www.ansys.com)
An export to the FieldView Unstructured File format is available from this solver. See the documenta-
tion for this solver to find out more information concerning this export.

FIDAP
(www.ansys.com)
Versions of FIDAP for release 8.x and later will support the export to the FieldView Unstructured File
Format. This export is a specially marked file which can be read by the general FieldView package
which is supplied by Tecplot Inc..

 Figure 50 Importing Spray Droplet data

http://www.ansys.com
http://www.ansys.com
http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 85

Table of ContentsIndex

FIDAP is a finite element based solver. There is no interpolation between FIDAP and the export to
FieldView, so you should expect integrated quantities to match.

Any boundary surfaces defined within FIDAP will be correctly exported, and will be available as
Boundary Types on the Boundary Surface panel within FieldView.

Fine/Turbo
(www.numeca.be)
An export to the PLOT3D file format is available from this solver. This file format can be read directly
into FieldView. Currently there is no support to carry over boundary surface information. Also, sur-
face based or face based results are not written out. Please review the documentation for this solver
to find out more information concerning the export to the PLOT3D file format.

FLUENT
(www.ansys.com)
To read data from FLUENT into FieldView using the FLUENT [FV-UNS Export] entry on the Data Input
menu, it must be first exported. We recommend that the FieldView Unstructured file format
(*.fvuns) be used for all 3d and 3ddp (double precision) data. The export to the FieldView Unstruc-
tured file format also works for the parallel version of FLUENT. For FLUENT 6.3.26 and earlier, the
FieldView Case+Data (*.fvc and *.fvd) export option, available only thru the TUI, should not be
used as it is now no longer supported. Only legacy FieldView Case (*.fvc) and Data (*.fvd)
exported files can be read using the native RAMPANT-FLUENT/UNS interface within FieldView.

To output FieldView Unstructured files from FLUENT, select the Export… item under the File pull-
down menu of the FLUENT Solver interface. This interface is shown in Figure 51.

http://www.numeca.be
http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 86

Table of ContentsIndex

Choosing the Export… item on the File menu brings up the Export panel. This is where exporting
takes place. The Export panel is shown in Figure 52.

From the export panel, select the functions to write out to the exported file. By default, the exported file
will have the same root name as the data in memory. Therefore, if the data is called transit.cas/
transit.dat, then the resulting FieldView output file will be transit.fvuns.

 Figure 51 FLUENT Export Pull-down

Press this button to
bring up the Export
panel which will
allow you to export
your results in the
FieldView Unstruc-
tured data format.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 87

Table of ContentsIndex

By default, the velocity vector (X, Y, and Z Velocity) is always exported. Therefore, if the entire “Func-
tions to Write” section is deselected, then the only output will be the velocity vector.

Warning: Since the velocity vector (X, Y, and Z Velocity) is automatically exported, do not select it from
the “Functions to Write” panel. Doing so will result in multiple velocity vectors being exported to the file,
causing function conflict pop-ups when the data in read into FieldView.

FLUENT is a finite volume based solver. Interpolation from the cell centers to the nodes, necessary for
exporting to the FieldView Unstructured file, is handled by FLUENT.

Choose this option
to output data in the
FieldView Unstruc-
tured data format.

These buttons are use to select all func-
tions (left) or to deselect all functions
(right). Selecting all functions is not rec-
ommended. See accompanying text.

Press this button to
export the results. This
will bring up a file
browser showing the
default output filename.
See Figure 53.

This section allows you to select which functions you wish to be exported. The list of functions shown will vary
depending on the model. Note: The X, Y, and Z Velocity functions are automatically exported and should not be
selected. See accompanying text.

 Figure 52 FLUENT Export Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 88

Table of ContentsIndex

The variables that are listed in the “Functions to Write” field will depend on the model. If the physical
model includes turbulence, discrete phase modeling, radiation modeling or chemical reactions, for
example, additional functions will appear. When the desired functions to export are selected, press the
Write button. This will bring up a browser that will allow you to change the root name of the output file
and change the directory to which the file is written.

Regions are supported with the export to the FieldView Unstructured File format. You should expect
to see a file with the extension .fvreg created when you create an export. The region file contains
information on the grids in the model, and it can be used by FieldView to provide additional functional-
ity. A full discussion of the Region File is provided in Chapter 3. Note that at present, the FLUENT
export creates a Version 1 FVREG, or region, file.

Transient Data
For transient data, we recommend that you make use of the FLUENT Text User Interface (TUI), and
the Execute Command feature to automate the writing of FieldView Unstructured files for a given set
of time step intervals. To bring up this form select the Execute Command… item under the Solve pull-
down menu of the FLUENT Solver interface. The root filename and the actual variables to be written
are included in the Execute Command.

 Figure 53 FLUENT Export File Browser

These sections can be used to filter and
browse your directory structure. The path
of the current directory may be added
before the root name given below.

Enter in the root file name desired for the
FieldView export file. The extension
.fvuns will be automatically added to the
specified root name.

Press OK when the filename and directory
are specified to export the file.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 89

Table of ContentsIndex

At the interface prompt within the FLUENT window, you can issue the command

> file/export/fieldview test

and hit return twice. This will create a list of all of the available scalars and vectors which can be
exported to the FieldView unstructured file format.

To export the data and scalar variables, you need to include this information in the Command line:

/file/export/fieldview-unstruct my_export my_list_of_scalars () * () q

If you include a "%3t" to the end of the filename, FLUENT will automatically export the time step. For
example, if you wanted to export the files at each time step along with scalars of pressure and tem-
perature, the command line:

/file/export/fieldview-unstruct my_export%3t () * () pressure temperature q

will automatically produce these files:

my_export001.fvuns
my_export001.fvuns.fvreg

 Figure 54 FLUENT Execute Command GUI

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 90

Table of ContentsIndex

my_export002.fvuns
my_export002.fvuns.fvreg
my_export003.fvuns
my_export003.fvuns.fvreg
...etc

Note: The .fvreg extension is the region file associated with the dataset. For more information
about region files, please see Chapter 3 of the Reference Manual.

Exporting Particle Trajectories
Steady State Case
For steady state cases, the particle trajectories can be exported with the FLUENT Export Particle Data
panel that is available in the Solve/Particle History sub-menu (Figure 55). Choose the injections that
you want to export and click on Write and make sure that the file is saved with the .fvp extension.

To save selected particles (only what is displayed), first display the particles that you want exported in
the Display/Particle Tracks panel and then write out the file with the Export Particle Data panel.

Standalone Particle Translator for Steady State Cases
A standalone translator is also available to convert FLUENT Particle Trajectory reports into FieldView
particle path files. Again, this provides the ability to visualize two-phase flow results with the exported
FLUENT files. The FORTRAN 77 source (fluent2fvp.f) and executables for each of the Field-
View hardware platforms are located in the /FLUENT directory of the /translators directory on the
FieldView Installation CD-ROM. The /translators directory is not installed by default and the
desired files should be copied to your system. The translator fluent2fvp will convert FLUENT ver-
sion 5.2 (and higher) trajectory reports to the FieldView ASCII Particle Path format. This format is
described in Appendix L of the Reference Manual. Once the file is converted into an *.fvp file, you
can import it with the Particle Path panel.

 Figure 55 Export Particle Data Panel

Note: The standard FLUENT
export for two-phase data is
based directly on the native
FieldView Particle Path for-
mat. No conversions are
required to read this type of
data.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 91

Table of ContentsIndex

Transient Case
FLUENT will automatically save the particle path file when the FieldView Unstructured files are saved
via Execute Command. When the solution iterates, FLUENT will dump the particle path data to the file
based on the time you write your FieldView Unstructured file as specified in the Execute Commands.

These are the steps to initialize the export of the transient particle path data:

1. Initialize your dataset.
2. Initialize the injections by choosing Reset DPM Sources.
3. Open the Export Particle Data panel available in the Solve/Particle History sub-menu (Figure 56).

Choose the injection that you want exported and click on Apply.

4. Enter a file name with the fvp extension (Figure 57), choose OK and close the Export Particle
Data panel.

 Figure 56 Export Particle Data Panel

 Figure 57 Save File Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 92

Table of ContentsIndex

FUN3D
(https://fun3d.larc.nasa.gov)
The NASA FUN3D software package is an unstructured CFD code that has been developed for a wide
range of applications which may include incompressible, compressible or hypersonic flow. Solution
approaches include steady and unsteady calculations with single or multiple species in the fluid
domain. Prominent applications by NASA include studies of airframe noise, space transportation vehi-
cles, flow control devices and rotorcraft. Advanced algorithms are employed to address dynamic grid
adaption, design optimization, fluid structure interaction, design optimization and adjoint-based error
estimation. The parallel efficiency of the solver has been well developed for application to many large-
scale systems.

Volume variable data can be exported to the following file formats: FieldView unstructured (FV-UNS),
VTK, CGNS and Tecplot Binary (FUN3D 13.5 manual, B.4.29 &volume_output_variables). Boundary
and sampling variable output can be exported to Tecplot Binary files (FUN3D 13.5 manual, B.4.30
&boundary_output_variables and B.4.31 &sampling_output_variables). The FieldView Reference
Manual includes relevant sections for each of these file formats and the Tecplot Binary file format can
be read with the Ensight Reader.

The benefits of FieldView’s parallel efficiency can be realized if the solver writes the data export with
data partitioned into multiple blocks within one file or partitioned into multiple files. The FieldView
unstructured (FV-UNS) format is the only file type that is enabled for a Parallel Read operation (see
FieldView Parallel Datasets). FieldView’s Partitioned File Parallel Reader (PFPR) capability can
be used, with any file type read by FieldView, for a set of files written on a per-solver-process basis.
The volume variable output section of the FUN3D manual describes some file formats written in this
manner. The PFPR layout-file should be manually created by the user if it is not already written by the
solver.

GASP
(www.aerosft.com)
An export to the PLOT3D file format is available from this solver. This file format can be read directly
into FieldView. Currently there is no support to carry over boundary surface information. Also, sur-
face based or face based results are not written out. See the documentation for this solver for more
information on the export to the PLOT3D file format.

POLYFLOW
(www.ansys.com)
Versions of POLYFLOW for release 3.10.x and later will support the export to the FieldView Unstruc-
tured File Format. This export is a specially marked file which can be read by the general FieldView
package supplied by Tecplot Inc..

POLYFLOW is a finite element based solver. There is no interpolation between POLYFLOW and the
export to FieldView, so integrated quantities are expected to match.

https://fun3d.larc.nasa.gov
http://www.aerosft.com
http://www.ansys.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 93

Table of ContentsIndex

Any boundary surfaces defined within POLYFLOW will be correctly exported, and will be available as
Boundary Types on the Boundary Surface panel in FieldView.

STAR-CCM+
(www.cd-adapco.com)
An export to the native FieldView Unstructured (FV-UNS) file format is available from this solver. Sca-
lars and vectors can be chosen from a complete list with the STAR-CCM+ interface. Face based
results are supported with this export, and all boundaries defined within STAR-CCM+ are written to the
exported file.

Tetrex
(www.tetraresearch.com)
An export to the native FieldView Unstructured (FV-UNS) file format is available from this solver. This
file format can be read directly into FieldView. Boundaries defined in Tetrex are written to the
exported file. Currently, surface based or face based results are not written out. Refer to the docu-
mentation for this solver for more information on export to the FV-UNS format.

ThermoAnalytics
(www.thermoanalytics.com)
An export to the native FieldView Unstructured (FV-UNS) file format is available from this solver. This
format can be read directly into FieldView. Boundaries defined in ThermoAnalytics models are written
to the exported file. Currently, surface based or face based results are not written out. Refer to the
documentation for this solver for more information on export to the FV-UNS format.

Exports to FieldView Parallel Compatible Formats
Datasets must contain multiple grids to demonstrate any performance benefits of FieldView Parallel
(unless the Auto Partitioner is used). This is because the grids making up the entire dataset are dis-
tributed across the available server processes. Elements within each grid may vary significantly from
one grid to the next. Optimum parallel performance for reading datasets is realized when the elements
within each of the grids are evenly distributed across each of the available worker processes. Field-
View will attempt to balance the load across the available processes by applying the rule to distribute
the grids successively to the least loaded process. For example, consider a multigrid dataset com-
posed of several grids, with one of the grids containing many more elements than the others. Field-
View will use one process to read the grid with the large number of elements, and then distribute the
rest of the grids over the remaining processes. As a general rule, it is best to have grids containing a
relatively equal number of elements. And, it is preferable to have many more grids than available
server processes.

Multiple grid PLOT3D cases are directly compatible with FieldView Parallel, and most of the solvers
creating data having this format (i.e. OVERFLOW) will generate datasets of this type.

http://www.cd-adapco.com
http://www.tetraresearch.com
http://www.thermoanalytics.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 94

Table of ContentsIndex

Datasets which use the FieldView Unstructured (FV-UNS) file format may or may not be written to
contain multiple grids. To obtain performance benefits for FV-UNS datasets with FieldView Parallel,
multiple grids are required. A brief summary of commercial solvers that write or export FV-UNS files,
and whether they support multiple grids follows:

Solver
Compatible w/

FieldView Parallel
Notes

AcuSolve YES Use acuTrans -fvr subdomain to apply solver
partition information to create multiple grid FV-UNS
exports.

CFD++ YES Use genplif with the fieldviewmgb
(FieldView multigrid binary) option to maintain the
solver partition information in the FV-UNS export.

CFD-ACE Unknown Multigrid export is currently unavailable.

CFX YES Contact ANSYS CFX support.

COBALT NO Multigrid export is currently unavailable.

DROP3D Unknown Contact Ansys for more information.

FIDAP NO Multigrid export is currently unavailable.

Fine/Turbo YES Multigrid exports based on the PLOT3D format will
be compatible with FieldView Parallel.

Fire YES Contact AVL directly to obtain the FV-UNS translator
utility.

ANSYS Fluent YES Each cell zone is split into np grids, where np is the
number of parallel processes used by the AYSYS
Fluent session

FENSAP Unknown Contact Ansys for more information

FrontFlow YES This solver creates FV-UNS Partition files.

GASP Unknown

POLYFLOW NO Multigrid export is currently unavailable.

STAR-CCM+ YES Each region is split into np grids, where np is the
number of parallel processes used to read the
dataset.

USM3D NO Multigrid export is currently unavailable.

Solvers capable of Multigrid FV-UNS exports

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 95

Table of ContentsIndex

Standalone Translators to FieldView Formats

BANFF
(www.reaction-eng.com)
A translator to convert to the PLOT3D file format is available from this solver. This file format can be
read directly into FieldView. Boundaries defined in BANFF are supported as part of the translation.
Currently, surface based or face based results are not written out. Please review the documentation
for this solver to find out more information concerning the export to the PLOT3D file format.

CFD++
(www.metacomptech.com)
A translator to convert results to the FieldView Unstructured File format is available for this solver.
Please contact Metacomp directly to obtain information on this translator.

CFX-TASCflow
(www.ansys.com)
We have included an executable (tasc2pl3d) and documentation that will allow you to convert native
CFX-TASCflow, grid (grd) and results files (bcf, rso) into PLOT3D file formats which can be read
into FieldView. The executable and documentation can be found in the /tascflow subdirectory of
the /translators directory on the FieldView DVD. Note: the contents of the /translators direc-
tory are not installed by default and will have to be manually copied to your hard disk from the DVD.

COBALT60

A standalone translator is available to convert the government version of Cobalt60 datasets into Field-
View Unstructured files. Please contact the Air Force Research Lab where you obtained Cobalt60 to
acquire this translator.

PowerFlow
(www.exa.com)
A stand-alone translator is available from EXA to convert their files to the native FieldView Unstruc-
tured File Format. Please contact EXA to obtain this translator.

FIRE
(www.avl.com)
A translator is available from AVL to convert their output into the FieldView Unstructured File Format.
Please contact AVL directly to obtain this translator code.

GLACIER
(www.reaction-eng.com)
A translator to convert to the PLOT3D file format is available from this solver. This file format can be
read directly into FieldView. Boundaries defined in GLACIER are supported as part of the translation.

http://www.reaction-eng.com
http://www.metacomptech.com
http://www.ansys.com
http://www.exa.com
http://www.avl.com
http://www.reaction-eng.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 96

Table of ContentsIndex

Currently, surface based or face based results are not written out. Please review the documentation
for this solver to find out more information concerning the export to the PLOT3D file format.

USM3D
A stand-alone translator is available from NASA to convert their files to the native FieldView Unstruc-
tured File Format. Please contact Tecplot Inc. for information on how to obtain this translator.

VECTIS
(www.ricardo.com)
A translator is available to convert VECTIS 3.8 files to the FieldView Unstructured File format. This
translator is capable of handling arbitrary polygons.

All named boundaries within VECTIS 3.8 files will be included in the FieldView Unstructured File
export. They are accessible as Boundary Types on the Boundary Surface panel within FieldView.

This translator code will be available on the FieldView DVD in the /translators directory.

User Defined Plugin Readers for FieldView
This feature is used to specify and read in geometric data, results data, or both together, in your own
format. For more information about user-defined readers, consult Chapter 9 of this Reference Man-
ual. Some general comments concerning the use of Plugin Readers follow here.

There are two key Plugin Toolkit features. The first is to provide support to be able to read a dataset
with the format of having one single file for each transient time step. This change should eliminate
problems associated with very large files generated for transient cases with many time steps, and for
transient cases with large meshes. The second improvement is to provide internal support for native
arbitrary element handling. The capability to handle native arbitrary elements is fully supported. The
Plugin Toolkit has been automatically extended to cover this feature.

Some commercial solvers have written their own User Defined Plugin Readers to enable the reading
of their file formats into FieldView.

AVUS
This code, formerly COBALT60 (Government Version) has a User Defined Reader available. Please
contact Tecplot support to obtain information on this reader.

http://www.ricardo.com

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 97

Table of ContentsIndex

User Defined Plugin Readers for FieldView Parallel
User Defined or Plugin Toolkit readers support operation in parallel. On a related note, all of the cur-
rent plugin toolkits supplied with FieldView (acusolve_reader, cgns_reader, flow3d_reader, flu-
ent_reader and ls-dyna_reader) will already have support for FieldView parallel. However, at present,
there is no data available for these readers which is compatible with parallel.

The API for registering a User-Defined Data reader is located in one of the following two files:

ftn_register_data_readers.f (FORTRAN)

register_data_readers.c

These files are located in the /user subdirectory of your FieldView installation, and they contain addi-
tional comments on how to register a user defined data reader.

Single file multigrid parallel
For single file multigrid parallel, FieldView assigns different subsets of the grids to different parallel
processes (different worker server processes inside a FieldView parallel server). In this way, the work
of reading and post-processing the data is distributed and load-balanced. FieldView data readers are
divided into a "query" phase (which returns certain summary information such as the number of nodes
in each grid), and a "data read" phase which reads one grid at a time (the grid number is supplied to
the data read phase). It is required that your data reader can read a subset of the grids in a dataset.
These grids will be in ascending order, but there will be gaps. For example, the data read phase may
be asked to read grid 3 (skipping over grids 1 and 2), then grid 5, and then grid 9. If your data reader
supports reading selected grids like this, you can enable parallelization by setting the FV_GRID_PAR-
ALLEL_READER option as described in register_data_readers.c and ftn_register_-
data_readers.f.

If your data reader is slow to skip over grids (such as having to read significant portions of grid 4 in
order to skip from grid 3 to grid 5), then you may not get any parallel speed-up during the grid read
phase. However, you should still get parallel speed-up during many post-processing operations, such
as creating surfaces.

The query phase is currently called on all parallel (worker) processes. Therefore, if your query phase is
slow, you may not get any parallel speed-up during your data read. However, you should still get par-
allel speed-up during many post-processing operations.

Partitioned file parallel
Partitioned-file parallelization is for datasets that are split into "partition files", each of which contains a
subset of the entire dataset. For example, a parallel solver may split the dataset into partitions, assign
a partition to each sub-process in the solver, and then write each partition into a separate file.

In partitioned-file parallelization, FieldView assigns each partition to a different parallel process (a dif-
ferent worker process inside the FieldView parallel server). The assignment of partitions to server

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 98

Table of ContentsIndex

processes is controlled by a "layout" file, which is simply a text file that lists the partition files and which
host machines should process each partition; see the section in this chapter Description of Layout
File Format.

Unlike grid-file parallelization, all user-defined data readers automatically support partitioned-file paral-
lelization. There is no need to set any special data reader registration options.

Each FieldView server worker process only sees the single partition assigned to that process, so it
behaves like an ordinary non-parallel data reader. The extra work of splitting or merging the opera-
tions on the dataset is done automatically by FieldView using the information in the layout file.

There are restrictions on the partition files. All of the partition files in a single dataset must have the
same variable names (including boundary variable names if these are present). However, the partition
files can have different boundary types; the boundary types will be automatically merged by Field-
View.

Partitioned-file parallel does not support grid subsetting by the user during the data read. If the reader
has enabled this, it is forced off.

There are no special requirements for efficiency. However, if all of the partition files are located in the
same filesystem, then parallel speed-up during data reads can be hurt by competition for access to the
filesystem.

Unsupported features for Parallel Data Readers
The following features are not supported for single file multigrid parallel or partitioned-file parallel data
readers.

The following functions cannot be called from inside a parallel data reader:

fetch_element
fetch_element_ex
ftn_fetch_element
ftn_fetch_element_ex

If they are called from a parallel data reader, they will return an error code (-1 for failure, instead of 0 for
success). These functions can be called from inside user-defined functions (parallel or not), just not
from parallel data readers. Grid numbers inside each parallel process are local to that process; they
are not the same as the grid numbers seen in the FieldView user interface. The grid number passed
as an input argument to the user-defined functions is this kind of localized grid number. However, you
can pass this localized grid number to the fetch_element family of functions, and they will return
correct values for the grid. Be careful about using this grid number for anything except calling the
fetch_element family.

Temporary region files created by the data reader are not supported. Therefore, if a parallel data
reader calls:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 1 Data Files 99

Table of ContentsIndex

open_tmp_fvreg
ftn_open_tmp_fvreg

then these functions will return an error code (-1 for failure, instead of 0 for success).

Parallel data readers, including the PLOT3D and FieldView Unstructured readers provided with Field-
View, do not support the following FieldView features:

Dataset Sampling
Create Wall Boundaries
Create Exterior Boundaries

DataGuideTM is supported for partitioned file parallel readers (PFPR), but not for single-file multigrid
parallel readers.

Server Append and Dataset Comparison (via Server Append) are supported as of FieldView 14.

Reminder:
The data file formats currently supported for FieldView Parallel:
1. PLOT3D (binary, unformatted and double precision)
2. FV-UNS (binary, combined and split grid & results)
3. All plugin readers

To realize any benefits from parallel, such as speed-ups for creating or sweeping coordinate planes or
isosurfaces, the dataset(s) must first be read using FieldView parallel.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 100

Table of ContentsIndex

Chapter 2

Functions

The Function Specification panel contains four registers for holding various data values. These four
registers are: Iso-Surface, Scalar, Vector and Threshold. Each one may contain: a variable that has
been read-in from a file, a formula that was created with the Formula Specification panel, a user-
defined function, an intrinsic FieldView function (e.g. atan(y/z)) or a PLOT3D function. Functions
are separately stored in FieldView for each dataset when multiple datasets are read in. When the
Function Selection panel is brought up, it will only have the functions available for the current dataset
displayed. Functions cannot be used or transferred from one dataset to another.

The Function Specification panel is also used to define new scalar or vector quantities by accessing
the Formula Specification panel.

Function Specification Panel
This panel is used to define which variables are to be used when creating surfaces, as well as to
define any new variables. If you press any of the Iso-Surface, Scalar, Vector or Threshold buttons, the
Function Selection panel is presented. The Function Selection panel is used to pick the variable to
load into the selected register. Note that for all registers other than Vector, only scalar variables will be
displayed. For the Vector register, only vector variables will be displayed.

The Create and Edit buttons are used to define new variables, using the Formula Specification Panel.
The new variables may be defined from any of the variables currently in memory, constants, and any of
a series of pre-defined math functions.

Face Data and the Function Specification Panel
The function Min and Max values shown on the Function Specification panel (Figure 58) will normally
show the global min/max values for the entire nodal dataset. However, when face data exists (for
either PLOT3D or FieldView - Unstructured data) and are being used on the current boundary surface,
then the min/max fields will show the min/max values for the face data. These min/max values will be
those for all boundaries, not just those for the current boundary surface (if there is one).

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 101

Table of ContentsIndex

Face Data and the Function Selection Panel
If either PLOT3D or FieldView - Unstructured face data has been read in, then the Function Selection
panel (Figure 59) will list face results (either scalars or vectors, when appropriate). These face data
function names will appear after normal nodal data, but before all user-defined functions. These face
data functions will only be available through the Function Selection panel when the Boundary Surface
panel is up and face data exists for the current dataset.

Threshold will load
a scalar into the
Threshold Register.
This function is used
to limit the boundar-
ies of surfaces to
areas within a range
of values for a quan-
tity, such as tem-
perature or
pressure.

Iso-Surface will load
a scalar into the iso-
surface register. Iso-
surfaces are surfaces
of constant value,
such as regions of
constant tempera-
ture and pressure.

Delete is used to delete a For-
mula. Note that a Formula may
not be deleted if it is in use, which
means that it is currently loaded
into a register, is being used to
define one or more surfaces or is
used in another formula.

Edit will edit a for-
mula that has been
previously defined
with the Function
Formula Specifica-
tion panel.

Vector will load a
vector function into
the vector register.
Vector functions are
used for streamline
integration.

Scalar will load a
scalar quantity, such
as temperature or
pressure, into the
scalar register.

Create will bring up the Function Formula
Specification panel. This panel is used to
create a new function based on any previ-
ously defined functions, constants, func-
tions read from an external file or
predefined math functions.

 Figure 58 Function Specification Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 102

Table of ContentsIndex

Using the Functions Panel

Defaults after Reading a Data Input File

What are the 4 registers shown on the Functions panel?

Q File Other Results File(s)
Iso-Surface none none
Scalar Density (Q1) F1 (1st scalar)
Vector Momentum (Q2-Q4) V1 (1st vector); if no vector,

none.
Threshold Density (Q1) f1 (1st scalar)

After selecting which register you
wish to load, you will be presented
with all of the functions that may be
loaded into the selected register.
To select a new function, you may
use the scroll bar on the right to
select any variable from the list.
Only functions available for the cur-
rent dataset are listed here (apart
from the intrinsic functions Field-
View supplies).

Once you have selected the func-
tion you wish to load, press the cal-
culate button to load it into the
register.

 Figure 59 Function Selection Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 103

Table of ContentsIndex

FieldView has 4 basic function registers: Iso-Surface, Scalar, Vector and Threshold. These four reg-
isters are used to hold various scalar and vector quantities that have been read in from a file, are intrin-
sic, or have been calculated using the Function Formula Specification panel.

By using the Iso-Surface panel, a surface will be displayed that shows all areas in the volume where
the currently loaded Iso-Surface function is equal to the value specified on the panel.

On any of the Visualization Panels, if the button marked Scalar is pressed, the current surface/rake will
be colored by the scalar function that is currently loaded into the Scalar register.

If a surface is displayed as vectors those vectors will represent the vector variable that is currently
loaded into the Vector register. Additionally, the current rake of streamlines is calculated based upon
the function currently loaded into the Vector register.

If the Thresholding option on any of the Visualization panels is used, the current surface will be clipped
to show only areas that are within the range specified on the panel, of the currently loaded Threshold
function.

How do I change the function that is loaded into a register?
In order to change functions, press the appropriate register button you wish to change (e.g., if you wish
to change the function that is loaded into the Scalar register, press the Scalar... button). When you
press the button of your choice, you will be presented with the Function Selection panel (see Figure
59). This panel will list all of the functions available to be loaded into the register you have chosen
(only vector functions for the Vector register, non-vector functions for the other registers). You may
either double click on the correct function, or select it with a single mouse click, and press the Calcu-
late button. This will cause the function to be calculated and loaded into the register you have
selected. Once it is loaded, the minimum and maximum values for that function will be displayed.

Face Data and the Function Formula Specification Panel
Face data results cannot be used in user-defined formulas. This means that Face data function
names will not appear in the Quantities list of functions available for use in a formula.

Using the Function Formula Specification Panel
Constants
The following constants are supported:

Alpha, FSMach, Re, Time - These are the four constants associated with each grid in a PLOT3D Q,
NPARC/WIND or FV-UNS (Version 2.4 and higher) file. The constants will only be accessible when
the data has been read in.

PI - the constant 3.1415... ()

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 104

Table of ContentsIndex

Lists the Name of the
function that is being
edited. It will be blank at
other times.

The Constants sec-
tion contains values
that FieldView
obtains from certain
solver results files.
For some solvers
the number of con-
stants available may
be fewer or greater
than the number
shown here.

The Operations and
Keys are the built-in
functions supported
by FieldView. Any
formula that can be
expressed in terms
of these operations
and solver variables
can be created and
saved.

When any of the
Constants, Opera-
tions or Quantities
are selected, the
Formula created will
be displayed in this
area. This area may
also be edited so
that functions can be
typed in directly.

This toggle allows switch-
ing Dataset Comparison
mode on and off.

Quantities lists all of the
functions that are valid for
the current dataset,
including all of the geo-
metric grid-based func-
tions.

 Figure 60 Function Formula Specification Panel

Lambda2 (2) criterion is
based on the observation
that, in regions where
lambda2 is less than zero,
rotation exceeds strain,
and in conjunction with a
pressure minimum, indi-
cates the presence of a
vortex.

The Q-Criterion function is
based on the general form
of the criterion proposed
by Hunt in 1988. The func-
tion is generalized such
that no assumption is
made on compressibility.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 105

Table of ContentsIndex

Operations/Keys
The operations allowed on the Function panel are described below:

 Figure 61 Function Operations

Frequently Asked Questions
How do I Create a new formula?
To create a new formula, first press the Create button on the Function Specification panel, which will
bring up the Function Formula Specification panel. This panel is used to create new formulas based
upon variables already in memory (but only for the current dataset), formulas previously defined, some
pre-defined constants, and a set of pre-defined math functions shown in the table above.

Operator Input Output Description
Qcriterion 1 vector 1 scalar Built-in CFD Function Q-Criterion
criterion 1 vector 1 scalar Built-in CFD Function Criterion
VecX 1 vector 1 scalar extract X component of a vector
VecY 1 vector 1 scalar extract Y component of a vector
VecZ 1 vector 1 scalar extract Z component of a vector
nrmlz 1 vector 1 vector compute V/mag(V)
dot 2 vectors 1 scalar dot product of 2 vectors
cross 2 vectors 1 vector cross product of 2 vectors
curl 1 vector 1 vector curl of a vector
mag 1 vector 1 scalar magnitude of a vector
exp 1 scalar 1 scalar take e to a power
log, ln 1 scalar 1 scalar log or natural log of a scalar
log, ln 1 vector 1 vector log or natural log of each component of a

vector
grad 1 scalar 1 vector gradient of a vector
sin, cos, tan 1 scalar 1 scalar perform one of these trig operations on a

scalar
div 1 vector 1 scalar divergence of a vector
asin, acos,
atan

1 vector 1 scalar perform one of these trig operations on a
scalar

atan2 2 scalar 1 sclar output in radians
abs 1 scalar 1 scalar absolute value
sqrt 1 scalar 1 scalar square root
/ , * 2 scalars 1 scalar divide or multiply 2 scalars
- , + 2 scalars 1 scalar subtract or add 2 scalars
- , + 1 vector 1

scalar
1 vector multiply or divide a vector by a scalar

^ 2 scalars 1 scalar raise a scalar to a power
Unitx none 1 vector <1,0,0>, unit vector along x-axis
Unity none 1 vector <0,1,0>, unit vector along y-axis
Unitz none 1 vector <0,0,1>, unit vector along z-axis

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 106

Table of ContentsIndex

You may use the mouse to press any of the buttons on the panel, or select any of the variables shown
in the quantities section. For example, to define a new formula that is equal to the pressure divided
by 2, you would perform the following operations:

• Select the variable pressure from the Quantities section
• Press the / button
• Press the number 2

As you press these buttons, you should see the formula being created in the Formula section of the
panel. You may also type into this area to create or modify the formula.

When you have finished entering the formula, press the OK button. At this point, you will be given the
option to give your formula a unique name. You may either type in a name, or press the Use Formula
button to have the name be the formula itself (in the example above, the name would be "pres-
sure"/2). Note that Function Formula names are case insensitive (i.e., U is the same as u).

Creating a formula will not cause any calculation and will not load the formula into any of the function
registers. In order to calculate the function and load it into a register, you simply use the Function
Specification panel normally, and select the formula to load.

How can I Edit a previously created formula?
Once a formula has been created, it may be edited by pressing the Edit button on the Functions panel.
When this button is pressed, you will be given a list of all previously created formulas to select from.
After you pick which formula you wish to edit, the Function Formula Specification panel will be brought
up, with the selected formula shown in the Formula section of the panel. At this point, you may change
the formula by using the panel normally.

Note: You can edit formulas as long as they are not in use, or in use only by the current surface. If you
try to edit a formula that is being used by a surface other than the current surface, you will be given an
error message. If a formula is being used in a second formula, then you may only edit the first formula
if the second formula is not in use or is in use only by the current surface. Editing the first formula will
change the definition of the second formula as well.

Can I save more formulas for use in another FieldView session?
By using the Formula Restart option on the Restart Files menu, all of your formulas may be saved into
a file to be reused in a later session of FieldView. In this way, you can build up a library of formulas
that only need to be programmed once. For more information on Restart Files, please see Chapter 5
of this Reference Manual.

Naming Convention
Names of quantities must be enclosed in double-quotes ("); this is automatic if you
select them with the mouse.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 107

Table of ContentsIndex

Possible Issues
Cannot edit this function. It is in use by 2D plots, or by surfaces other
than the current surface.
A Formula may not be deleted or edited if it is “in-use” by any surface other than the current surface.
This means that if the formula is loaded into any of the registers for any surface other than the current
surface, you will be unable to edit or delete it.

Cannot edit this function. It is in use by one or more formulas, which in
turn are used by 2D plots or by surfaces other than the current surface.
If you use a formula as part of the expression to define a second formula, then you will not be able to
edit the first formula when the second formula is in use by any surface other than the current surface.

Differences between Datasets
The ability to see the differences between two or more datasets can help to determine the scope and
magnitude of any changes between them. Dataset Comparison mode allows the creation of formulas
that may reference quantities of more than one dataset. This permits the creation of dataset compari-
son formulas, such as the difference in pressure between two datasets.

The Dataset Comparison toggle on the Function Formula Specification panel enables this mode. All
datasets in memory are tested against the current dataset for compatibility. Note that the File.. Data
Input.. Server Append option must be checked ON (the default) to support Dataset Comparison if data
is read with FieldView server(s).

WARNING: In order for a dataset to be compatible with the current dataset it must have the same
number of nodes and the same grid count and grid dimensions. In order for the comparison to be valid
the nodes in each dataset must be in the same order and have the same position in space, although
FieldView does not check for this. FieldView makes no attempt to map results onto a different topol-
ogy or connectivity. In short, the results of compatible datasets should be in a configuration where they
could be appended to the geometry of the current dataset. For information on comparing datasets with
different grids and results, see Dataset Sampling in Chapter 14 of Working with FieldView.

This feature is intended to be useful for comparing different solver runs of the same case or for com-
paring different time steps of the same solver run, where various time steps may be appended one
after another in FieldView memory. Comparing solutions from different solvers is beyond the current
scope of this feature unless the solutions meet the criteria discussed above.

To identify quantities of specific datasets, quantity names are tagged by a dataset number and a colon
(:) delimiter, as in 1:"pressure". This denotes the pressure scalar variable of dataset 1. A for-

Displaying Formulas
Only formulas that are valid for the current data will be shown in the Function Speci-
fication panel. For example, if you create a formula that uses the variable Pressure,
and then read in data that does not contain Pressure, the formula will not be dis-
played in the Function Specification panel.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 108

Table of ContentsIndex

mula to describe the pressure difference between datasets 1 and 2 may be written 1:"pressure"-
2:"pressure".

Constants may also be prefixed with a dataset identifier. A formula for the Cp (coefficient of pressure)
of an NPARC/WIND dataset:

(2/(Gamma*FSMach*FSMach))*("Pressure [WIND]"/Pinf-1)

could be rewritten to yield the delta Cp of datasets 1 and 2:

(2/(1:Gamma*1:FSMach*1:FSMach))*(1:"Pressure [WIND]"/1:Pinf-1)-
(2/(2:Gamma*2:FSMach*2:FSMach))*(2:"Pressure [WIND]"/2:Pinf-1)

Note that constants are not quoted and that the dataset number prefix is before the quotes of quantity
names. When selections are made from the Function Formula Specification list of quantities, the
selections are pasted into the formula string buffer in this form.

Constants and quantities for comparable datasets are listed in the Quantities list of the Function For-
mula Specification panel prefixed by the dataset number while Dataset Comparison mode is enabled.
The buttons for constants in the Function Formula Specification panel, except for PI button, are dis-
abled while Dataset Comparison mode is enabled. Thus, if datasets 1, 2, and 4 were matched as
being comparable, and one of these datasets was the current dataset in FieldView, one might see the
constant Alpha for each of the datasets...

1:Alpha
2:Alpha
4:Alpha

... and a function velocity for each of the datasets...
1:velocity
2:velocity
4:velocity

Built-in quantities such as X, atan(Y/Z), J and IBLANK will appear in the Quantities list tagged
for each dataset, as in...

1:X
2:X
4:X

When Dataset Comparison mode is on, formulas containing no tagged quantities will appear in the
Quantities list with a dataset prefix preceding the formula name. Such formulas will appear once for
each dataset for which the formula can be calculated. Dataset Comparison formulas that contain
tagged quantities will appear in the Quantities list only once. No dataset prefix will be added to the
names of these formulas.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 2 Functions 109

Table of ContentsIndex

If a PLOT3D dataset is dataset 1 and the equivalent NPARC/WIND dataset is dataset 2, and the
geometry is identical, this could be a valid formula for delta density:

1:"Density (Q1)" - 2:"rho, density"

However, there may be differences in units and dimensionalization that may need to be accounted for.
This may also be true of other data types.

Out of Range Handling
When a dataset is initially read into FieldView, all scalar and vector functions are checked for the pres-
ence of Inf and NaN values. If a scalar or vector function contains values that are not finite, a message
is printed to the console window.

Variable "function-name" contains out of range values.

All scalar and vector function values that are not finite are skipped when computing the Min and Max
values which are shown in the SCALAR COLORING section on the Colormap tab for all surfaces and
rakes. If a scalar or vector function has no finite values at all, then the Min and Max values are both
set to zero.

When a function is used for scalar coloring, values that are not finite are automatically mapped to the
color magenta. When a function is used to define a vector surface, vectors that are not finite are not
displayed.

Formulas cannot be created for Surface based results.

If you see magenta colored areas like this on your visualization object, setting
Threshold ON for that function will turn off the visibility of those areas.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 110

Table of ContentsIndex

Chapter 3

Region Files

Introduction
Regions are sub-volumes of datasets. Regions are defined using a simple ASCII text file having the
*.fvreg extension. The Region file (FVREG) is used to group grids and define the type (Cartesian
or cylindrical) and location of the coordinate system. In addition, the file is used to pass blade row
information for rotating machinery and turbomachinery applications.

Important Note: The existence of FieldView Region Files (.fveg) corresponding to data files
for the Pratt PW Common File or Acusolve [Direct Reader] Data Input types will be ignored.
Those two readers handle region files internally.

Region Features

With regions defined, you can:
• Create sub-volumes of your data for any data file format.
• Transform the origin of your dataset (useful if your symmetry plane does not lie at a zero axis, i.e. X

= 0).
• Independently manipulate subvolumes of your data by transforming them and controlling their visi-

bility.
• Use regions as subsetting tools to control the visibility for surfaces and rakes.
• Change from XYZ Coordinate Surfaces to RTX or RTZ Cylindrical Coordinate Surfaces (see note

below).
• Create streamline rakes based on RTX or RTZ coordinates.
• Point probe in RTX or RTZ coordinates.
• Define a machine axis of either X or Z for rotating machinery cases.
• Define direction vectors for the machine axis and the zero theta plane.
• Define blade row parameters such as wheel speed, blade count and period to create periodic rota-

tional copies.
• Switch between absolute and relative frames of references for the calculation of streamlines and

the display of velocity vectors.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 111

Table of ContentsIndex

Regions form a separate hierarchy in FieldView with some attributes of a dataset and some attributes
of surfaces. When regions are present for the current dataset, then there will always be a current
region. This is similar to the concept of current dataset, rake or surface. The current region is that
which will be transformed when Object: is Region. This added hierarchy level affects many areas and
panels in FieldView which require separate controls and fields for information relevant to regions. In
this section, those controls and fields will be detailed.

DataGuideTM: This feature can be used in conjunction with a region file (*.fvreg). However, once
the DataGuideTM files are created using a particular region file, they become associated with that spe-
cific FVREG file. If the associated FVREG file is changed, the DataGuideTM files will be out of sync
and will not be used. Important Note: If a dataset transform exists in the FVREG file, a DataGuideTM

results file (*.fvres) will not be created with the current implementation of regions. Changes in the
region file can indicate that a change in the grid occurred. Therefore the old DataGuideTM results file
may be incorrectly associated with a new solver results file.

Region Subsetting
Regions add additional subsetting to FieldView. A surface (Coordinate or Iso-Surface) can be subset-
ted (restricted to) specific grids. That is, an Iso-Surface can be displayed on only grids 1-3 of a 9 grid
geometry (for example). Region subsetting is available for Coordinate and Iso-Surfaces as well as
Streamlines. Region subsetting for Computational surfaces is not required, since a Computational sur-
face consists of only a single grid, and a grid either belongs to a region or does not. A grid cannot
span more than one region like the other surface types mentioned above. In addition, grid subsetting
is available for Streamlines (see Chapter 6 of Working with FieldView for more information). If
regions are used, then the Iso-Surface can be subsetted so that it will not be displayed over specified
regions. This is performed with the surface’s Subset Parameters panel. See Subset Parameters

FieldView Panel Change

Transform Controls Like Dataset number, the current Region number is dis-
played in a separate field. In addition, +/- buttons allow
you to easily change the current region. This section is
grayed out if there are no regions defined for the current
dataset. See Region Controls in Working with Field-
View for more information.

Transform Controls,
Object: pull-down
menu

Like Datasets, Surfaces, etc., Regions can be transformed
(translated, rotated and zoomed). The Object: pull-down
contains Region in its list. If Object: is set to Region but
there are no regions defined for the current dataset,
attempting an object transform will produce an error. See
Region Controls in Working with FieldView for more
information.

Point Probe This panel will display the region number and name if you
probe on a grid belonging to a region. See Chapter 13 of
Working with FieldView for more information.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 112

Table of ContentsIndex

Sub-panel in Working with FieldView for more information about the basic operation of the Subset
Parameters sub-panel.

Turning off a region is equivalent to turning off all of the grids that belong to a region. If the current grid
on the Subset Parameters panel belongs to the region chosen to be subsetted off, then a warning (in
red) will appear on the panel informing you of this fact.

Once Region and Grid Subsetting has been applied, FieldView will determine the intersection of the
region and grid subsetting. Each surface has both region and grid subsetting applied and the result to
the visualization will be the intersection of your settings. That is, a grid is off if it belongs to a region
that is off or the grid itself has been turned off. A grid is on only if the region it belongs to is also on.

Converting Data into Cylindrical Coordinates
The Region file can be used to permit visualization of XYZ data using an RTX/Z (Radius, Theta, X/Z)
system in FieldView. This affects many of the panels and fields in FieldView and will be described in
detail below (as well as mentioned in the specific panel chapters of Working with FieldView). Note
that the input grid(s) values must always be Cartesian. FieldView facilitates display of this Cartesian
data using RTX/Z coordinates upon read-in. FieldView will not recognize non-Cartesian grid data

A Cylindrical entry in the fvreg file affects a large number of different panels and operations. The
areas affected are summarized in the following table. This information is also presented in notes in the
specific chapters dealing with the features in question.

FieldView Panel Change

Coordinate Surface The Coordinate Surface panel will exhibit R, T, and X or Z
surfaces and sliders instead of X, Y, and Z. See Chapter
9 of Working with FieldView for more information.

Vector Options
Uniform Sampling

Sampling directions will be RTX or RTZ, instead of XYZ.
See Vector Options Sub-panel in Working with Field-
View for more information.

Streamlines The usual XYZ seeding mode will be displayed and oper-
ate as RTX or RTZ seeding. In addition, the XYZ Auxiliary
Seed Plane will instead be RTX or RTZ. See Chapter 6 of
Working with FieldView for more information.

2D Plot Three changes: i) The XYZ Curve plot types will be dis-
played and operate as RTX/RTZ Curve plots, ii) The XYZ
choice on the Horizontal Axis/Plotting Direction will change
to RTX/RTZ, and iii) the end points on the Edit Points
panel will now be R, T, and X or Z. See Chapter 12 of
Working with FieldView for more information.

Iso-Surface The Cutting Plane type-in and edit fields will be RTX or
RTZ instead of XYZ. See Chapter 5 of Working with
FieldView for more information.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 113

Table of ContentsIndex

Region Hierarchy
Regions are a distinct hierarchy in FieldView below Dataset but above grids and rakes. Since some
surfaces span Regions (Iso-Surface, Boundary and Coordinate) and some do not (Computational sur-
face), Regions and Surfaces can share a parallel level in the hierarchy. Also, the results of using
Cylindrical Coordinates on the affected panels is mentioned throughout this Reference Manual and its
companion, the User’s Guide.

Region hierarchy and the effect of region transform is represented by the following two diagrams,
where the various levels have been labeled for clarity. The hierarchy shown in this particular example
is:

Point Probe This panel will display point location in RTX or RTZ coordi-
nates instead of the usual XYZ coordinates. See Chapter
13 of Working with FieldView for more information.

Import Both Point Probe and 2D Plot import will be assumed to be
in RTX or RTZ coordinates.

Export 2D Plot, Point Probe, Iso-Surface, Coordinate and Bound-
ary Surface export will reflect RTX or RTZ coordinates in
both labels and values. Note: Streamlines and Vortex
Cores / Surface Flows will not be exported in RTX or RTZ
coordinates.

Sweep Integration The output file created by this form of integration will con-
tain RTX or RTZ labels and values. See Integration Con-
trols in Working with FieldView for more information.

World
Dataset #1

Region #1
Region #2
Rake

Dataset #2
Surface
Region #1
Region #2

 Figure 62 Region Hierarchy Schematic

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 114

Table of ContentsIndex

Transforms affect surfaces and rakes differently. Rakes transform with the region their seeds belong
to; surfaces will ‘split-up.’

World
Dataset #1

Region #1
Region #2
Rake

Dataset #2
Surface
Region #1
Region #2

 Figure 63 Transformed Region Hierarchy Schematic

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 115

Table of ContentsIndex

Region Controls Panel

This section indicates the total
number of regions for the cur-
rent dataset as well as the cur-
rent region. The region name
as specified in the *.fvreg file is
also shown. The Select… but-
ton allows you to select a spe-
cific region by name.

Controls the Region Scale, Rota-
tion, and Translation attributes,
just as you can for the Dataset,
using Dataset Controls Panel.

 Figure 64 Region Controls Panel

Here, the Visibility can be turned
on and off.

The DUPLICATION section of
the Region Controls panel allows
you to set Region Mirroring or
Rotational Duplication. (See next
figures.)

This panel appears when the
Select… button on the Region Con-
trols panel is pressed. It allows you
to select a specific region by name.
The currently selected region (region
[1] in this example) will be high-
lighted. Press the Close button once
you have selected the desired
region. Note: Only the current region
can be translated or transformed.

 Figure 65 Region Names Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 116

Table of ContentsIndex

The Mirror and Rotational duplication for Regions functions are similar to those for Datasets, shown on
“Dataset Controls Panel” on page 109 of the Working With FieldView PDF. However, unlike Dataset
rotational duplication, Region Rotate does not count the current Region as part of the number of cop-
ies. Blade Row Regions will display the value of Period (from the fvreg file) in the Delta Sweep
field. Hence, the panel above would result in the original Blade Row, two copies in the positive angular
direction and one copy in the negative angular direction for a total of four. If more copies (Copies [+] +
Copies [-] + Original) exist than are allowed by the 360 degree limit, FieldView will issue a pop-up
warning and ignore, but not correct the value. If the Region Rotate Parameters panel is exited and
then brought up again, the previous (good) value will be shown. The Delta Sweep field can be edited.
A value larger than that set by the Period will result in gaps between the original and duplicated
regions. A value smaller than the Period will result in regions that overlap.

Non-Blade Row Regions will show 360 in the Delta Sweep field. This default value should be set to
the proper angular value for the region in question. Failure to do so will result in duplicate copies of the
region 360 degrees apart, or at the same location, resulting in no visual difference but doubling the
number of surfaces FieldView needs to draw, thus slowing performance. Since no period is provided

 Figure 66 Region Mirror and Rotate Parameters

The DUPLICATION section of this panel
changes to show Mirror Parameters,
when Mirror is selected.

The section will change to show Rota-
tion Parameters, when Rotation is
selected.

These settings allow you to rotationally
duplicate defined regions. Blade Row
regions will use the value of the constant
PERIOD from the FieldView Region
(.fvreg) file in the Delta Sweep field.
Non-Blade Row regions will use the
default value of 360. Rotational duplica-
tion can be done in both the positive and
negative angular direction.

WHEEL SPEED and BLADES PER
ROW settings, if set in the Region File,
will also be displayed on this panel, but
do not provide any default panel set-
tings.

Note: The Translate button on this panel
applies only to Dataset Controls.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 117

Table of ContentsIndex

for a generic Region, more copies than necessary to fill 360 degrees can be input, with no warning
messages.

For additional information, see Periodic Streamlines in Working with FieldView.

Region File Naming Convention
The additional hierarchy of regions (as well as dataset transform information) is communicated to Fiel-
dView through the use of the FVREG or FieldView Region file - (*.fvreg). This file is supported by
all FieldView data readers, and uses the same file name as the grid file (or combined grid/results file),
but with the additional .fvreg extension. Therefore, if you have a PLOT3D XYZ file called tur-
bo_x.bin, then the associated FVREG file would be called turbo_x.bin.fvreg. If you were using
a FieldView Unstructured (FV-UNS) combined grid/results file called mydata.uns, the region file
would be named mydata.uns.fvreg.

Example:

Note: FieldView will only look for all upper or all lower case suffix names. Mixed case suf-
fixes will not be seen. That is, f16.xyz.bin.Fvbnd and f16.xyz.bin.fvREG are
invalid Structured Boundary file names.

Transient FV-UNS and PLOT3D
If a region file is used for transient FV-UNS or PLOT3D files, then there are two valid file naming con-
ventions. The easiest option is to have one global FVREG file for the entire transient sequence. This
file would take the root name of the grid, or grid/results file without any embedded time step values.
The other option is to use one FVREG file for each grid, or grid/results file, using the same naming
convention. These two options are illustrated in the following example for the case of transient
PLOT3D data:

f16.xyz.bin Binary grid (XYZ) PLOT3D file

f16.q.bin Binary Q (Results) file

f16.xyz.bin.fvreg Region file

Grid File Separate FVREG Files Global FVREG File
duct_0010.g.bin duct_0010.g.bin.fvreg duct_.g.bin.fvreg
duct_0020.g.bin duct_0020.g.bin.fvreg
duct_0030.g.bin duct_0030.g.bin.fvreg
… …
duct_1080.g.bin duct_1080.g.bin.fvreg

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 118

Table of ContentsIndex

Important Note: Although the “one file per time step” naming convention is allowed, every
FVREG file must have identical region, vector and blade row definitions.

This follows the same naming convention as Structured Boundary Files (for PLOT3D). See Appendix
H of this Reference Manual for more information.

Region File Version 2 Format
Version 2 is the latest Region File format and its description file is ASCII. Its length and contents will
depend on the amount of information you need to pass to FieldView. After the format description, sev-
eral examples will show different forms of the FVREG file and its uses.

Note: If spaces exist before the beginning of a comment line, an error may result. Make
sure that all spaces have been deleted so that the comment starts at beginning of the line.

Note: Tecplot Inc. continues to support Version 1 of the Region Files. Please see “Region
File Version 1 Format” on page 137 for more information.

Note: We expect that the CFD solver which you are using will be capable of writing a Region file with
the correct settings automatically. At present, some commercial solvers do create Region Files, how-
ever, they may require some editing to capture the correct context for rotating machinery problems.

Below is a general example of a complete FieldView Region File:

! Comment lines preceded by '!'
! Begin with the Version Number
FVREG 2

DATASET_COORD_TYPE CYLINDRICAL
MACHINE_AXIS X
ROTATION_ORIENTATION CW

! Basic Origin Definition [DEFAULT]
ORIGIN 0.000000 0.000000 0.000000

! AXIS DIRECTION VECTORS
! To point in X-direction, use:
MACHINE_AXIS_VECTOR 1.000000 0.000000 0.000000

! For a Zero Theta Plane at Y = 0, use:
ZERO_THETA_VECTOR 0.000000 1.000000 0.000000

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 119

Table of ContentsIndex

! Refine display of R surfaces
FACET_COUNT 160

! If Velocity Components [rad], [tang], [axial] are needed,
! add the VELOCITIES section
!
VELOCITIES 1
velocity

! A simple region definition
REGION

Inlet
NUM_GRIDS 2

2
3

! To get Transformed, Relative Velocities, a
! BLADE_ROW Definition is needed
BLADE_ROW

BLADES_PER_ROW 30
WHEEL_SPEED -125
PERIOD 12
NUM_REGIONS 1
REGION

fluid-rotor-1
NUM_GRIDS 1

1

A description of each section within the region file follows:

Region File Section Description

FVREG 2 The Region File Format Version Number is set with the
integer number 2. FieldView is backward compatible to
recognize Version 1. Descriptions below apply to
Region File Format Version 2.

DATASET_COORD_TYPE
CARTESIAN/
CYLINDRICAL

There are two possible settings for this parameter:
CARTESIAN or CYLINDRICAL. If CYLINDRICAL is cho-
sen, then you will have the option to work directly with
either RTX or RTZ coordinates. This parameter defini-
tion must be present within the Region File

MACHINE_AXIS X/Z If the DATASET_COORD_TYPE is set to CYLINDRICAL
then you must define this parameter. The choices are
either X or Z, and this will determine whether you will
work using RTX or RTZ coordinates within FieldView,
respectively.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 120

Table of ContentsIndex

Note: If DATASET_COORD_TYPE is CARTESIAN, the default MACHINE_AXIS_VECTOR is
(0,0,1) and the default ZERO_THETA_VECTOR is (1,0,0). If DATASET_COORD_TYPE is
CYLINDRICAL, the defaults for these vectors and the formulas for R and THETA are shown
in the table below. As shown in the table, they depend on the definition of MACHINE_AXIS
and the ROTATION_ORIENTATION in the Region File.

ROTATION_ORIENTATION
CCW/CW

This parameter must be specified if the DATASET_CO-
ORD_TYPE is set to CYLINDRICAL. The options are
for either CCW or CW and this defines the direction in
which a Theta coordinate surface will be swept. This will
also be incorporated into the formulas for the tangential
velocity component.

ORIGIN xx yy zz The ORIGIN is defined by the point with the Cartesian
coordinates xx yy zz. For a non-zero set of values, a
one-time transformation to all grid data will be done
during the data read-in.

MACHINE_AXIS_VECTOR
mx my mz

A MACHINE_AXIS_VECTOR can be defined to trans-
form the dataset axis to match the axis of rotation for the
model. As with the ORIGIN specification, this is a one-
time transformation, applied to all grid data during the
data read-in. The vector is defined by mx my mz. If
this is not explicitly specified, then defaults are applied
based on the MACHINE_AXIS choice.

ZERO_THETA_VECTOR
tx ty tz

The ZERO_THETA_VECTOR locates the plane where
the Theta coordinate surface will be displayed. As with
the ORIGIN specification, this is a one-time transforma-
tion, applied to all grid data during the data read-in. The
vector is defined by tx ty tz. If this is not explicitly
specified, then defaults are applied based on the
MACHINE_AXIS choice.
Note: The choice of the MACHINE_AXIS_VECTOR and
the ZERO_THETA_VECTOR must form a perpendicular
axis system. Otherwise, an error pop-up will inform you.
If this happens, then the data will not be read. If this
occurs as part of a restart read-in, the sequence will
abort and only the data read in prior to the error will be in
memory. Since the restart will abort during the Dataset
restart, no surfaces will be drawn, etc., for any of the
datasets.

R Definition Theta
Definition

Machine Axis
Vector (default)

Zero Theta
Vector (default)

CW tan-1(X/Y) (0,0,1) (1,0,0)

Z sqrt(X2+Y2)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 121

Table of ContentsIndex

CCW tan-1(Y/X) (0,0,1) (0,1,0)

CW tan-1(Y/Z) (1,0,0) (0,1,0)

X sqrt(Y2+Z2)

CCW tan-1(Z/Y) (1,0,0) (0,0,1)

FACET_COUNT nfacet R Coordinate surfaces are drawn in FieldView using a
default value of 120 facets per 360 degrees of span. For
narrow blade passages, this default value may be too
low to produce a smooth surface. The FACET_COUNT
parameter, nfacet, lets you increase this to a maximum
of 360 facets per 360 degrees.

VELOCITIES nv A region file does not have to contain a VELOCITIES
section. If it does exist, it must be after the dataset sec-
tion and before any REGION or BLADE_ROW section. It
lets you specify nv vector functions (by name) which
will be transformed based on the information for the
BLADE_ROW section (see below). The following scalar
functions will be automatically derived for a vector called
velocity:

velocity [axial]
velocity [radial]
velocity [tangential]
velocity [axial][rel]
velocity [radial][rel]
velocity [tangential][rel]

For a non-zero WHEEL_SPEED in the BLADE_ROW
section, you will also have an additional vector available
called velocity [rel] which is a transformed veloc-
ity for the absolute frame of reference.
Important Note: All velocity vectors passed to FieldView
must be in an absolute Cartesian reference frame to be
correctly transformed to a relative reference frame.

R Definition Theta
Definition

Machine Axis
Vector (default)

Zero Theta
Vector (default)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 122

Table of ContentsIndex

Omega Built-in Function
There is a built-in function, omega, available through the function calculator, which is similar to the
unitx, unity and unitz unit direction vectors. This function can be used to show the wheel
speed in units of [rad/s] for any given region if it is used as a scalar to color any surface within Field-
View. Note that it has different units than the wheel speed, which are specified in [rev/s].

FIXED_VECTORS nfv A region file does not have to contain a FIXED_VEC-
TORS section. If it does exist, it must be after the data-
set and VELOCITIES sections, and before any
REGION or BLADE_ROW section. This section allows
you to specify which vector functions will not be trans-
formed.
Note: When there is a transform specified in the FVREG
file, all vector variables will be rotated to match the new
coordinate system, regardless of whether or not they are
tagged as velocities. This is because vector variables
will almost always need to be transformed, even if they
are not a velocity (e.g. momentum).

REGION
 region_name
 NUM_GRIDS ng

A region file does not have to contain a REGION sec-
tion. A region is a collection of one or more grids, ng.
Not all grids in a dataset need belong to a region. How-
ever, no grid may belong to more than one region. You
can have as many regions as there are grids within your
dataset. Regions group grids together so that they may
be treated as a single sub-volume unit for translations,
rotations, duplication and detachment. Region names
appear on the Region Controls panel.

BLADE_ROW
 BLADES_PER_ROW bpr
 WHEEL_SPEED ws
 PERIOD np
 NUM_REGIONS nr
 REGION
 region_name
 NUM_GRIDS ng

A blade row applies a set of properties to one or more
regions. The BLADES_PER_ROW, bpr, is equal to the
number of blades or passages that would result in a full
360 degree geometry, not the number of blades/pas-
sages that make up the grid file.
The WHEEL_SPEED, ws, is the rotational velocity of the
blade in units of revs/sec. A blade row can have a value
of ws = 0, as would be the case for a stator row in a
turbine.
The PERIOD, np, is the ‘sweep’ angle used for rotational
duplication. Hence, a period of 20 (degrees) will cause
the Delta Sweep field on the Region Rotate Parameters
to be 20, which will be used when copies are made.

Important Note: All velocity vectors passed to FieldView
must be in an absolute Cartesian reference frame to be
correctly transformed to a relative reference frame.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 123

Table of ContentsIndex

The definitions of the transformed cylindrical components of the velocity vectors will depend upon the
definition of the MACHINE_AXIS and ROTATION_ORIENTATION. Additional definitions are needed
for the relative cylindrical velocity components. These formulas are summarized in the following table:

Region File Examples

Basic Coordinate Transform Example
One of the basic uses of region files is to transform the dataset in cartesian space. The region file
below transforms the origin of the dataset located at the tip of the model from 0,0,0 to 5,5,10.

FVREG 2
DATASET_COORD_TYPE CARTESIAN
ORIGIN 5 5 10

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 124

Table of ContentsIndex

Mirroring
One of the benefits of using region files is to transform a model so that it can be properly mirrored. In
some cases, the origin is not located on the symmetry plane and the model cannot be properly trans-
formed as in (Figure 68) below. In this case the plane of symmetry is offset from by 2 meters.

This problem can be corrected by using a region file that shifts the mirror plane by -2 along the z axis:

FVREG 2
DATASET_COORD_TYPE CARTESIAN
ORIGIN 0 0 -2

0,0,0 0,0,0

5,5,10

 Figure 67 Transforming Datasets in Cartesian Coordinates

Dataset whose
origin is at the tip
of the model

The origin has been
transformed from
0,0,0 to 5,5,10 using a
region file

2

 Figure 68 Mirror Offset Problem

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 125

Table of ContentsIndex

Cylindrical Coordinate Example
Region files allow the user to transform datasets from Cartesian to Cylindrical Coordinates. This
Region File not only transforms the data into cylindrical coordinates, but orients the machine axis along
the X-axis (which is the default definition in this case) and sets a rotation orientation in the clockwise
direction (see Figure 70 below):

FVREG 2

DATASET_COORD_TYPE CYLINDRICAL
MACHINE_AXIS X
ROTATION_ORIENTATION CW

 Figure 69 Mirror Offset Correction
Z=0

 Figure 70 Transforming Data into Cylindrical Coordinates

Coordinate surfaces created in
cartesian coordinates

Radial Surface

Coordinate surfaces created in
cylindrical coordinates

Theta sur-
face can be
rotated 360
degrees
around
machine
axis

x-axis sur-
face

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 126

Table of ContentsIndex

Creating Smooth Radial Surfaces
In some cases the radial surface may have a jagged display as shown in Figure 71. To smooth the
surface, the region file allows the user to increase the number of facets on the radial surface. Figure
71 shows a a total of 15 facets used in the display of the radial surface. By increasing the facet count
to 80 with the below region file, the radial surface has become quite smooth as shown in Figure 72.

FVREG 2

DATASET_COORD_TYPE CYLINDRICAL
MACHINE_AXIS X
ROTATION_ORIENTATION CW

FACET_COUNT 80

Note: The facet count is optional. The default facet count is set to 40 which may generate
smooth radial surfaces and therefore a facet section in your region file may not be needed.

Transforming Velocity Vectors
The cylindrical coordinates of velocity can be transformed and each component extracted by adding a
velocity section. The below region file will transform the two velocity vectors named phase-1_ve-
locity and phase-2_velocity.

FVREG 2

! Change to RTX Coordinates and
! used default axis definitions

DATASET_COORD_TYPE CYLINDRICAL

 Figure 71 Jagged Radial Surface Figure 72 Smooth Radial Surface

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 127

Table of ContentsIndex

MACHINE_AXIS X
ROTATION_ORIENTATION CW

!Transform velocity vectors to include
!axial, radial and tangential components

VELOCITIES 2
phase-1_velocity
phase-2_velocity

The region file will produce these velocity components that will be automatically loaded into the func-
tion panel:

phase-1_velocity [radial]
phase-1_velocity [tangential]
phase-1_velocity [axial]
phase-2_velocity [radial]
phase-2_velocity [tangential]
phase-2_velocity [axial]

These velocity components can be readily displayed on the model as can be seen from Figure 73 and
Figure 74.

 Figure 73 Tangential phase-1_ve-
locity component on R surface

 Figure 74 Radial phase-2_velocity
component on theta surface

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 128

Table of ContentsIndex

Adding Regions
Regions can be specified by adding a region section. Each region section includes the region name
(specified by the user), the total number of grids grouped into the region and the grid numbers. If you
do not know the grid numbers, they can be obtained by using the FieldView Point Probe Tool (see
Chapter 13 for more information on point probing). The below region file specifies 3 regions: the fluid
region, the impeller with 6 blades and the impeller with 3 blades (see Figure 75).

FVREG 2

! Change to RTX Coordinates and
! used default axis definitions
DATASET_COORD_TYPE CYLINDRICAL
MACHINE_AXIS X
ROTATION_ORIENTATION CW

! Transform velocity vectors to include
! axial, radial and tangential components
VELOCITIES 2
phase-1_velocity
phase-2_velocity

! Region Definitions
REGION

fluid
NUM_GRIDS 1

1

REGION
6-blade_impeller

NUM_GRIDS 1
2

REGION
3-blade_impeller

NUM_GRIDS 1
3

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 129

Table of ContentsIndex

Blade Row Example
In this section we will discuss how to create a region file for a blade row as shown in Figure 76 below.

fluid region

6-blade_impeller
region

3-blade_impeller
region

 Figure 75 Region Definitions

 Figure 76 Blade Row

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 130

Table of ContentsIndex

Defining Machine and Zero Theta Axis
The Machine Axis and the point where the Theta Axis begins at zero degrees can be defined in the
region file. The below region file transforms the data into cylindrical coordinates, defines the Machine
Axis as X (see Figure 77 below), Rotation Orientation in the Counter-Clockwise direction (CCW), sets
the Zero-Theta axis in the positive Y direction.

FVREG 2

DATASET_COORD_TYPE CYLINDRICAL
MACHINE_AXIS X
ROTATION_ORIENTATION CCW

! Basic Origin Definition
ORIGIN 0.000000 0.000000 0.000000

! AXIS DIRECTION VECTORS
! Machine Axis follows X-direction
MACHINE_AXIS_VECTOR 1.000000 0.000000 0.000000

! Rotation axis vector has no constraint
ZERO_THETA_VECTOR 0.000000 1.000000 0.000000

Theta surface rotates
around the machine axis
and is defined so that at
Theta = 0 it lies along
the positive Y axis

 Figure 78 Zero Theta Surface Figure 77 Machine Axis
Defined in X-Direction

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 131

Table of ContentsIndex

Adding Blade Rows
Each blade row can be defined by a region file. The information that you must provide are the number
of blades per row, the wheel speed, period, the number of regions and the region definition. Before
you create a region file, reviewing some basic definitions will be useful.

Definition of the Period
The period is the amount of degrees swept by a single blade. For example, the blade shown in Figure
79 has a period of 12 degrees.

Definition of Blades Per Row
The blades per row is determined by how many blades determine a full 360 rotation. For example, if a
blade has a period of 12 degrees the number of blades equals 360 divided by 12 resulting in 30
blades. To learn how to copy the blades, see “Rotational Duplication of Regions” on page 136.

 Figure 79 Period Definition

12

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 132

Table of ContentsIndex

Definition of Wheel Speed
The wheel speed is the rotational speed of the blade row and it can be set in either the clockwise or
counter-clockwise direction. The units are always in revolutions per second (rev/s).

This row has 30
blades each with a
period of 12
degrees rotated
around the
machine axis.

 Figure 80 Blade Row Definition

rev/s

 Figure 81 Wheel Speed

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 133

Table of ContentsIndex

Creating the Region File
The below region file transforms the dataset into cylindrical coordinates, transforms the velocity and
creates four blade row regions. It is important to note that you can have a blade row with a wheel
speed of zero. See Figure 82 for a picture of the model.

FVREG 2

DATASET_COORD_TYPE CYLINDRICAL
MACHINE_AXIS X
ROTATION_ORIENTATION CCW

! Basic Origin Definition
ORIGIN 0.000000 0.000000 0.000000

! AXIS DIRECTION VECTORS
! Machine Axis follows X-direction
MACHINE_AXIS_VECTOR 1.000000 0.000000 0.000000

! Rotation axis vector has no constraint
ZERO_THETA_VECTOR 0.000000 1.000000 0.000000

! Change display of R surfaces
FACET_COUNT 160

VELOCITIES 1
velocity

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 134

Table of ContentsIndex

BLADE_ROW
BLADES_PER_ROW 30
WHEEL_SPEED -125
PERIOD 12
NUM_REGIONS 1
REGION

fluid-rotor-1
NUM_GRIDS 1

1

BLADE_ROW
BLADES_PER_ROW 30
WHEEL_SPEED -125
PERIOD 12
NUM_REGIONS 1
REGION

fluid-rotor-2
NUM_GRIDS 1

2

BLADE_ROW
BLADES_PER_ROW 30
WHEEL_SPEED 0
PERIOD 12
NUM_REGIONS 1
REGION

fluid-stator-2
NUM_GRIDS 1

3

BLADE_ROW
BLADES_PER_ROW 30
WHEEL_SPEED 0
PERIOD 12
NUM_REGIONS 1
REGION

fluid-stator-1
NUM_GRIDS 1

4

fluid-stator -1

fluid-rotor -1

fluid-rotor -2

fluid-stator -2

 Figure 82 Turbo Region Example

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 135

Table of ContentsIndex

Omega
Displaying omega as scalar on the boundary surfaces of the blades shows the wheel speed in
radians/s. The scalar formula is created by simply typing in “omega” in the function creation panel.

 Figure 83 Transformed Velocity Magnitude on the Blades

fluid-stator-1 and 2
are in the relative
reference frame and
have a wheel speed
of zero.

fluid-rotor-1 and 2
are in the absolute
frame of reference
and have a wheel
speed of -125 rev/s

Wheel Speed
in rad/s

 Figure 84 Displaying Omega

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 136

Table of ContentsIndex

Rotational Duplication of Regions
Each region can be rotated independently of the other regions using the Region Controls panel. Fig-
ure 85 below shows the settings in the region panel to rotate the fluid-stator-1 region 360 degrees
around the Machine Axis.

Clicking on the Rotation button will fill the panel
with settings for Region Rotate Parameters, and
Delta Sweep. Blade Row regions will use the
value of the constant PERIOD from the FieldView
Region (.fvreg) file in the Delta Sweep field. Non-
Blade Row regions will use the default value of
360. Rotational duplication can be done in both
the positive and negative angular direction.

WHEEL SPEED and BLADES PER ROW set-
tings, if set in the Region File, will also be dis-
played on this panel, but do not provide any
default panel settings.

Twenty nine copes of
the blade have been
rotated around the
machine axis resulting
in a total of 30 blades
for the row.

 Figure 85 Copying Regions

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 137

Table of ContentsIndex

Region File Version 1 Format
This format has been superseded by Version 2. Regions can be used to group grids for visualization
purposes, whether it involves turbomachinery or not. Region formation provides you with better con-
trol over a multi-grid geometry much the same way as the Structured Boundary File for PLOT3D data
allows better control of groups of computational surfaces.

In the above image, the F18 dataset (used in both the Basic Aerospace Tutorial, Chapter 3 of the
User’s Guide and the demo script), is sectioned into four regions. The region file that defines the
regions of Figure 86 is shown on the following page.

 Figure 86 Region Example 2

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 138

Table of ContentsIndex

Region File Section Description

FVREG 1 The Region File Format Version Number is set with the
integer number 1. FieldView is backward compatible to
recognize Version 1. Descriptions below apply to
Region File Format Version 1.

FVREG 1
DATASET_COORD_TYPE cartesian
 ORIGIN 0 0 0
 Z_AXIS 0 1 0
 THETA_AXIS 1 0 0
REGION
 Forebody
 NUM_GRIDS 1
 1
REGION
 Midbody
 NUM_GRIDS 2
 2
 3
REGION
 Afterbody
 NUM_GRIDS 3
 4
 5
 6
REGION
 Rear
 NUM_GRIDS 3
 7
 8
 9

Region #1

Dataset

Region #2

Region #3

Region #4

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 139

Table of ContentsIndex

When the DATASET_COORD_TYPE is set to CYLINDRICAL, the specification of the Z_AXIS and
THETA_AXIS direction vectors fixes the definitions for R and Theta coordinates. It will always be the
case that:

R = sqrt(X2+Y2) and
Theta = tan-1(X/Y)

DATASET_COORD_TYPE
CARTESIAN/
CYLDINRDRICAL

There are two possible settings for this parameter:
CARTESIAN or CYLINDRICAL. If CYLINDRICAL is cho-
sen, then you will have the option to work directly with
RTZ coordinates. This parameter definition must be
present within the Region File

ORIGIN xx yy zz The ORIGIN is defined by the point with the Cartesian
coordinates xx yy zz. For a non-zero set of values, a
one-time transformation to all grid data will be done
during the data read-in.

Z_AXIS mx my mz A Z_AXIS direction vector can transform the dataset
axis to match the axis of rotation for the model. As with
the ORIGIN specification, this is a one-time transforma-
tion, applied to all grid data during the data read-in. The
vector is defined by mx my mz.

THETA_AXIS tx ty tz The THETA_AXIS direction vector locates the plane
where the Theta coordinate surface will be displayed.
As with the origin specification, this is a one-time trans-
formation, applied to all grid data during the data read-in.
The vector is defined by tx ty tz.
Note: The choice of the Z_AXIS and the THETA_AXIS
must form a perpendicular axis system. Otherwise, an
error pop-up will inform you. If this happens, then the
data will not be read. If this occurs as part of a restart
read-in, the sequence will abort and only the data read in
prior to the error will be in memory. Since the restart will
abort during the Dataset restart, no surfaces will be
drawn, etc., for any of the datasets

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 140

Table of ContentsIndex

Using Version 1 of the Region File Format, several vectors are available from within the function selec-
tion listing, typically titled: velocity, velocity [cyl], velocity [rel] and velocity
[rel][cyl], where velocity was the name of the vector in the optional VELOCITY transform
section of the region file. Because the [cyl] vectors had components based on R, Theta and Z,
they could not be displayed correctly, since all vectors in FieldView are shown using a Cartesian (X/Y/
Z) reference frame.

VELOCITIES nv A region file does not have to contain a VELOCI-
TIES section. If it does exist, it must be after the dataset
section and before any REGION or BLADE_ROW section.
This section allows you to specify which velocity func-
tions (by name) you wish to have available in cylindrical
form, relative form, or both. For each (Cartesian) veloc-
ity function listed in this section, FieldView will create a
derived cylindrical version of the vector quantity. This
will have the same name as the (Cartesian) velocity, but
will be given the [cyl] suffix. In addition, if a
BLADE_ROW section (see below) with a non-zero value
for WHEEL_SPEED exists, then FieldView will create a
relative version of the Cartesian and cylindrical veloci-
ties. Given a vector, velocity, FieldView will make
the following vector functions available:

velocity [cyl]
velocity [rel]
velocity [cyl][rel]

Important Note: All velocity vectors passed to FieldView
must be in an absolute Cartesian reference frame to be
correctly transformed to a relative reference frame.

PLOT3D Note: All PLOT3D derived vector functions are
computed from the Momentum [PLOT3D] vector
(which is formed from the “Q” quantities Q2, Q3 and Q4).
Hence, if Momentum [PLOT3D] is placed in the
VELOCITIES section, all derived vector functions
(Velocity [PLOT3D], Vorticity [PLOT3D], etc.)
will be transformed, and [cyl] (and [rel] quantities if
a BLADE_ROW section exists) versions made available
as well. For a complete list of all PLOT3D functions, see
Appendix A of this Reference Manual.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 3 Region Files 141

Table of ContentsIndex

FIXED_VECTORS nfv A region file does not have to contain a FIXED_VEC-
TORS section. If it does exist, it must be after the data-
set and VELOCITIES sections, and before any
REGION or BLADE_ROW section. This section allows
you to specify which vector functions will not be trans-
formed.
Note: When there is a transform specified in the FVREG
file, all vector variables will be rotated to match the new
coordinate system, regardless of whether or not they are
tagged as velocities. This is because vector variables
will almost always need to be transformed, even if they
are not a velocity (e.g. momentum).

REGION
 region_name
 NUM_GRIDS ng

A region file does not have to contain a REGION sec-
tion. A region is a collection of one or more grids, ng.
Not all grids in a dataset need belong to a region. How-
ever, no grid may belong to more than one region. You
can have as many regions as there are grids within your
dataset. Regions group grids together so that they may
be treated as a single sub-volume unit for translations,
rotations, duplication and detachment. Region names
appear on the Region Controls panel.

BLADE_ROW
 BLADES_PER_ROW bpr
 WHEEL_SPEED ws
 PERIOD np
 NUM_REGIONS nr
 REGION
 region_name
 NUM_GRIDS ng

A blade row applies a set of properties to one or more
regions. The BLADES_PER_ROW, bpr, is equal to the
number of blades or passages that would result in a full
360 degree geometry, not the number of blades/pas-
sages that make up the grid file.
The WHEEL_SPEED, ws, is the rotational velocity of the
blade in units of revs/sec. A blade row can have a value
of ws = 0, as would be the case for a stator row in a tur-
bine.
The PERIOD, np, is the ‘sweep’ angle used for rotational
duplication. Hence, a period of 20 (degrees) will cause
the Delta Sweep field on the Region Rotate Parameters
to be 20, which will be used when Copies are made.

Important Note: All velocity vectors passed to FieldView
must be in an absolute Cartesian reference frame to be
correctly transformed to a relative reference frame.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 142

Table of ContentsIndex

Chapter 4

FieldView
Extension
Language (FVX)
Introduction
FVX (the FieldView extension language) is a powerful language designed to help users
extend and customize FieldView. Restart files and Scripts predate FVX as mechanisms
to automate operations in FieldView. While powerful, there are some limitations that
result from the fixed nature of the restart files and the “linear” (non-programmable) nature
of the scripts. FVX will let you read datasets, create and manipulate surfaces, and per-
form complex quantitative post-processing tasks using a real programming language. A
primary goal of FVX is automation of Quantitative Analysis such as computing figures of
merit (e.g. efficiency). A secondary goal is to permit advanced visualization by mixing
FVX with restart-based scripts. Rather than having redundant commands, all existing
Restart Files and Script Language syntax from Chapter 5 can be used within FVX by
using the fv_script() command (see page 246).

FVX is based on Lua4. Additional functions and other details beyond what is docu-
mented here can be found in https://www.lua.org/manual/4.0/manual.html.

Some of the highlights of FVX are:
• Looping and Control Structures (if, while, etc.),
• User-defined variables and function calls,
• Built-in functions for string manipulation and mathematical functions,
• Ability to read and write files for parameters, reports, etc.,
• Functions to read CFD Datasets (PLOT3D and FV-UNS) and Query things like Grid

topology, XYZ Min/Max, Function names, Boundary surface types, etc.,
• Create, Modify, Query and Delete Boundary Surfaces, Cutting Planes, Iso-surface,

Streamlines, Coord and Computational Surfaces,

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 143

Table of ContentsIndex

• Output the results of Integrate and Probe into variables,
• Functions to create basic GUI Panels and sliders (same look & feel for Linux/Win-

dows),
• High quality, user-defined 2D Plots and bar charts that output via Postscript,
• A built-in Debugger that has been made to resemble the UNIX dbx tool.

FVX Syntax
FVX syntax is provided in this section, enabling you to write programs that can access a
significant portion of FieldView functionality.

Chunks
In FVX, a ‘chunk’ is a segment of code that is a self-contained program. It can represent
an independent program or can be part of another main program that is read-in and exe-
cuted during the execution of the main program. It can range in length from a minimum
of one line to a maximum whose limit is determined by the hardware environment.

Lexical Conventions
Variables in FVX can begin with any letter or the underscore ‘_’ symbol. Variables may
not begin with numbers. See FieldView Limits for maximum name length and number
of variables. FVX is case-sensitive. Therefore, a variable ‘temp’ is not the same as
‘Temp’. Comments can be placed in FVX programs. They begin with two dashes (--)
and their scope extends to the rest of the line. The following words are reserved and
may not be used as variables:

and break do else elseif
end for function if in
local nil not or repeat
return then until while

There is no need to declare variables in an FVX program. The scope of any variable is
global unless explicitly declared as local. See Variable Scope for details.

Types
An FVX variable by itself does not have a type. The type of the variable depends on the
assigned value. FVX values can have any one of five different types. They are nil,
number, string, function and table.

nil
Any variable declared in the program which does not have a value assigned is automati-
cally of type nil. In essence, it is a representation of the absence of a value for the rel-
evant variable.

number

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 144

Table of ContentsIndex

A variable of this type is a double-precision floating-point number.

string
A variable of type string consists of characters. Each character is represented by
eight bits. Strings can be represented by single-quotes or double-quotes and the behav-
ior is the same for both. One type may be used to enclose the other. The type of open-
ing quote must be the same as the closing quote. It is better to be consistent with
respect to which style is used. If the string has one type of quote as part of it, then the
other type may be used to enclose the string. Strings may also have escape characters
like those used in the C language.

function
Functions in FVX are represented by variables of type function. Because functions
are represented by variables, they can be passed as arguments to other functions. They
can also be returned as the result of other functions.

table
A variable of type table implements an associative array. Associative arrays are those
that can be indexed not only with numbers but also with any other data type (with the
exception of nil). The values may consist of all types in FVX (nil, number, string,
function, table).

Working with Tables
Tables are created by constructor expressions which are represented by {}. The exam-
ple below shows many methods of table creation and usage.

--create an empty table
iso_surface = {}

--create a table of string values with number indices
surface_types = {"wall", "inlet", "outlet"}

--create a table with a string index
-- this line creates the string variable "country"
country = "UK"
-- the table must be created here before being used below
capital = {}
capital[country] = "london" -- use "country" as an index
print (capital["UK"]) -- prints "london"

The variable that represents a table only refers to it. When another variable is assigned
this variable, both point to the same table, i.e., a copy is not made. For example,

-- assign the reference of this table to another variable
surface_types = {}

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 145

Table of ContentsIndex

my_surface_types = {}
my_surface_types = surface_types
-- change the value for the second index
my_surface_types[2] = "manifold"
print (surface_types[2]) -- prints "manifold"

There is another method of accessing values in a table. This is of the form
table.index. Note: This syntax may not be used for numerical indices. For example,

print (surface_types[3]) -- prints "outlet"
print (surface_types.3) -- wrong syntax
print (capital["UK"]) -- prints "london"
print (capital.UK) -- prints "london"

As mentioned earlier, the indices of a table can be a combination of all types mixed
together. For example,

test = {}
test[1] = 10
test[2] = 25
test["temp"] = 30
test.demo_func = function () print "Hello, World" end
print (test[1]) -- prints "10"
print (test[2]) -- prints "25"
print (test["temp"]) -- prints "30"
test.demo_func() -- prints "Hello, World"

In the above example, carefully note the syntax used to create and then call a function
which is part of a table. See Functions for more details.

When creating a table with different types of indices by means of a constructor, the val-
ues using number indices should be separated from values using other types of indices
by means of a semi-colon. Only a single instance of a semi-colon may appear in a table
constructor. For example,

test = {"wall","surface","inlet";length=10,width=8,height=3}
print(test[2]) -- prints "surface"
print(test.width) -- prints "8"

Note: While tables can easily be used to construct one dimensional arrays,
there is no native support for multi-dimensional arrays.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 146

Table of ContentsIndex

Variable Scope
As mentioned earlier, all variables in FVX automatically have a global scope. The only
exception is when they are explicitly declared as local. The scope of a local variable
is limited to the block in which it is declared. A ‘block’ in this case can be a control struc-
ture, the body of a function or a chunk of code. Variables with local scope have better
performance. If there is a need to create a block within a segment of code, it can be
done by starting it with the do statement and finishing it with the end statement.

Type Casting
FVX allows for automatic conversion of variables from type number to string and back
again. Conversion from number to string does not cause loss of precision. This can
be observed if this string is converted back to a type number. The disadvantage is
that the appearance of number variables may not be desirable when printed. For the
purpose of presentation, the format function described in a later section should be
used.

Operators
FVX has operators standard to most computer languages: arithmetic, relational, logical
and concatenation. These are covered below followed by information on operator prece-
dence.

Arithmetic
Arithmetic operations are performed with variables of type number. Any string vari-
able with a number in an arithmetic expression is automatically converted to number
before the arithmetic operation is performed. The standard addition (+), subtraction (-),
multiplication (*), division (/) and exponentiation (^) are available. Please note that val-
ues of type number are double-precision floating point values.

Relational
FVX supports the following relational operators: greater than (>), less than (<), greater
than or equal to (>=), less than or equal to (<=), equality (==) and inequality (~=). These
operators return a value of type nil for false and a value of type other than nil for
true. They can be applied to two variables where both variables are of type number or
string. Variables of type number are compared as expected. Strings are compared
based on alphabetical order, similar to other languages. However, string comparison is
dependent on the locale set for the machine running FieldView. For instance, with the
European Latin-1 locale, we have "acai"<"acorde". Other types can only be com-
pared for equality and inequality. Tables and functions are compared by reference, i.e.,
two tables are considered equal only if the variables point to the very same table.

Logical
The FVX logical operators are and, or and not. These operators consider nil as
false and all other types as true. The operator and returns nil if its first argument is
of type nil. Otherwise, the second argument is returned. The operator or returns the

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 147

Table of ContentsIndex

first argument if it is different from nil. Else, the second argument is returned. Here is
one FVX idiom that uses logical operators:

x = y or z

where x is assigned the value y if y has a value of type other than nil. If the value of y
is nil then x is assigned the value of z. If z is also nil, then x is assigned the value
nil.

Concatenation
In FVX, two strings can be concatenated with the operator “..” (two successive dots). If
one of the operands in the concatenation operation is a value of type number, it is auto-
matically converted to type string before the concatenation operation. The operation
does not affect the operands in any way because the output is a new string.

Example:
a = "Hello,"
b = " World"
c = a..b
print (c) -- prints "Hello, World"

Operator Precedence
FVX operators are listed below in the order of decreasing precedence:

^ (exponentiation)
not - (unary)
* /
+ -
..
<> <= >= ~= ==
and or

Within each line, the precedence is from left-to-right with the exception of the exponenti-
ation operation whose precedence is from right-to-left. To avoid confusion, it is better to
use parentheses to nest expressions. Note that for ‘not equal to’, the syntax used is ‘~=’
as opposed to ‘!=’ in other languages.

Statements
Assignment
FVX assignments set the value of variables. For example,

x = 1

assigns the variable x the value 1. FVX has the unusual ability where it is possible to
assign values to more than one variable in one assignment statement. For example,

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 148

Table of ContentsIndex

x, y = a, b

In this example, x is assigned the value a and y is assigned the value b. When the num-
ber of variables on the left side is greater than the number of values on the right side, the
extra variables are assigned the value nil. For example,

p, q, r, s = 1, 2

In this example, p and q are assigned the values 1 and 2 respectively. r and s are both
assigned the value nil. Similarly, if the right side has more values than the number of
variables on the left side, the extra values are ignored. For example,

m, n, o = 10, 11, 12, 13

Here, m, n and o are assigned the values 10, 11 and 12 respectively. The value 13 is
ignored.

Control Structures
FVX has the following type of control structures: if, while, repeat, and for.
Control structures consider test values of nil as false and all others as true. In FVX,
in test conditions, zero and non-zero values are evaluated to be true. Only nil values
are considered as false.

if
An if control structure first tests for a condition and uses the then section for true and
else section for false. The if control structure ends at the keyword end.

Example:
if x > 0 then

y = 1
else

y = 2
end

In this example, the x>0 condition is tested and if this results in a value other than nil to
be returned, the then segment of the structure is executed. Otherwise, the else seg-
ment is executed. More conditions can be tested after the initial if through the use of
elseif.

Example:
if x > 20 then

y = 1
elseif x > 10 then

y = 2
elseif x > 0 then

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 149

Table of ContentsIndex

y = 3
else

y = 4
end

while
The while control structure first tests the condition and then executes the body of the
structure if the condition passes. The condition is re-tested always after the completion
of the structure and it will repeat if it passes. The condition has to fail for the loop to end.

Example:
a = 1
b = 10
while a<b do

c = a^2
a = a + 1

end

As seen above, the delimiter of the while structure is the end statement.

repeat
The repeat control structure is similar to the while structure with the distinction that
the test condition is at the end of the control structure. Therefore, the program will exe-
cute the body of the structure at least once.

Example:
local x = 1
repeat

print (x)
x = x + 1

until x>10

The repeat control structure uses the until statement to begin the test condition as
seen in the above example.

for
The numeric for control structure uses a counter to progress through the loop for a set
number of times. The increment parameter to the counter is optional. When not speci-
fied, the increment is set to 1. The control structure finishes at the statement end. A
loop counter is set to an initial value for the first iteration of the loop. It is incremented for
subsequent iterations of the loop. Execution of the loop stops when the loop counter
exceeds the terminal value.

Example:
x = 0
for i = 1, 10, 2 do

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 150

Table of ContentsIndex

x = x + 1
end

At the end of the loop, the value of the variable x will be 5 because of the increment
value 2. It is possible to set the increment to a negative integer.

Note: The variable used to represent the counter is automatically declared
local. Therefore, when the loop exits, the value of this variable is not retriev-
able, i.e., the value of i after the end of the loop will be nil. If there is a need
to preserve this value, it is necessary to assign it to another variable.

Within a loop, the value of the loop counter should never be changed. Changing this
value inside the loop will cause unpredictable results. If there is a need to exit the loop,
the break statement should be used.

Example:
y = 1
for j = 1, 20 do

if j>10 then
x = j
break

end
end

In the above example, the loop exits gracefully after it goes through eleven iterations. In
addition, the value of the counter j is preserved in the variable x.

The table for loop can also walk through a table with numerical indices. By default,
numerical indices begin with 1.

Example:
t = { "l", "m", "n", "o" }
for i = 1, getn(t) do

print (t[i])
end

In the above example, the function getn() is used to retrieve the number of elements of
table t.

The table for loop traverses through index-value pairs in the specified table, in lieu of
using a counter. As each index-value pair is retrieved, appropriate action can be taken.
The order in which the index-value pairs are retrieved is random. The number of times
this control structure is traversed is equal to the number of indices in the table.

Example:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 151

Table of ContentsIndex

t = {a = 9,b = 6,c = 15,d = 27,tmp = 12}
for x, y in t do

print (x, y)
end

Functions
Functions in FVX are similar to functions in other languages in that they perform a pro-
grammed set of tasks in a block and may return values. Input arguments may be pro-
vided. Variables declared as ‘local’ within functions have a scope restricted to the
function, i.e., after the function returns, these variables and their values are destroyed:

Example:
function xyz (a, b, c)

d = a + b + c
return d

end

-- call the function
sum = xyz(3,2,3) -– the value stored in "sum" is 8

As in control structures, a function definition terminates with the end statement. In order
for a function to be accessible in an FVX program, the function definition needs to be
introduced to the program before it is called. When the above example is called with
a=1, b=2 and c=3, the function returns the value 6. Please note that xyz is a variable of
type function, as mentioned previously. It is a direct reference to the function. It can
be manipulated in ways similar to other types of variables. For example, it can be
passed in as an argument to another function. It can also be a field in an FVX table.

Like any other value, a function may be part of a table. Functions may be defined as
they are stored in a table. In this case, the function does not require a name. For exam-
ple,

Example:
--define the function
t.func = function(x)

return 5*x
end

--call the function
x = t.func(4) -- the value stored into variable "x" is 20.

A table can contain a function as well as data that the function can manipulate. In this
case, the table may be considered an ‘object’ in the Object Oriented Programming
sense.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 152

Table of ContentsIndex

Example:
--create a table
ambient = {

soundspeed = 330, -- [m/s]
temperature = 273, -- [deg. K]

density = 1.0, -- [kg/cm3]
gamma = 1.4, -- [-]
pressure = 0.795, -- [pascal]

R = 0.008314 -– [(kg*m2)/(s2*kg-mol*pascal)]
}

--define function to calculate ambient speed of sound
ambient.soundcalc = function(ambient)
ambient.soundspeed = sqrt(ambient.gamma*ambient.R*ambi-

ent.temperature)
end -–end definition of function "soundcalc"

--define function to calculate ambient pressure
ambient.pressurecalc = function(ambient)
ambient.pressure = ambient.density*ambient.R*ambient.tem-

perature
end -– end definition of function "pressurecalc"

In this example, the table holding ambient atmospheric properties may have its pressure
and speed of sound values updated with functions that are also held in the table. In this
sense, the table is a self-sufficient object which does not need outside functions to main-
tain its values. However, note that it was necessary to pass the table ambient as an
argument since the function is not aware of other values in the table. FVX does have a
colon notation which makes the act of passing a table to a function that is part of the table
more convenient. The colon notation uses a hidden first argument called self. self is
the table holding the function. The previous example is rewritten below to use the colon
notation. Here, self refers to the table ambient:

Example:
--define function to calculate ambient speed of sound
function ambient:soundcalc()

self.soundspeed = sqrt(self.gamma* self.R*self.tempera-
ture)

end

--define function to calculate ambient pressure
function ambient:pressurecalc()

self.pressure = self.density * self.R * self.temperature
end

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 153

Table of ContentsIndex

It is possible to write a function with a variable number of arguments. The special argu-
ment ‘…’, when used as the last argument to a function definition, indicates a variable
number of arguments. Inside the function, FVX creates a table arg which contains all
the arguments that are passed in. The example below illustrates this feature:

Example:
function sum(…)

local arg_count=1
local total=0
while arg_count<=arg.n do

total = total + arg[arg_count]
arg_count = arg_count + 1

end
return total

end

--call function
print(sum(1,2,3)) –- returns 6
print(sum(0,3,8,6))-– returns 17

A return statement is used to end a function or to return results from the function. Any
function has an implicit return statement by default, so it is not required. In this case,
no value is returned from the function. For syntactical reasons, a return statement can
only appear as the last statement of a block or chunk or just before an end or else
statement. Sometimes, there may be a need to have a return statement in the middle of
a block. In such cases, the return statement can be used by wrapping it with an explicit
do block.

Example:
function test(x)

return –-incorrect syntax

if x>2 then
return –-incorrect syntax

x = x + 1
end

--"return" is the last statement in this block
do return end –-correct syntax

…
… --remainder of the function
…
end

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 154

Table of ContentsIndex

Errors
When an error occurs during program execution, a pop-up window appears as an indica-
tion of the occurrence of the error along with some information on the error. When the
popup window is dismissed, the FVX debugger is started. This provides access to the
FVX environment for examination using debugger commands (see FVX Debugger).
Upon completion of the examination, the program execution may not be continued.
However, control may be returned to the FieldView GUI by entering the quit command.

General Function Library

Basic Functions
dofile(filename)
Receives a file name, opens the named file, and executes its contents as an FVX chunk,
or as pre-compiled chunks. When called without arguments, dofile() executes the
contents of the standard input (stdin). If there is any error executing the file, then
dofile() returns nil. Otherwise, it returns the values returned by the chunk, or a non-
nil value if the chunk returns no values. It issues an error when called with a non-string
argument. Note: If an error occurs within a program executed by dofile(), then the
program execution will resume at the line after this function.

An example would be using dofile to implement the FVX utility called set_view that
allows for manipulation of the view parameters which will permit user defined orientation
of a given dataset (see FVX View Controls).

Example:
dofile("set_view.fvx")

dostring(string [, chunkname])
Executes a given string as an FVX chunk. If there is any error executing the string,
then dostring returns nil. Otherwise, it returns the values returned by the chunk, or a
non-nil value if the chunk returns no values. The optional parameter chunkname is a
reference used in error messages to point to the correct segment of code where the error
occurred. This feature is most useful when the number of chunks used in a program is
relatively high.

Example:
message = "print ("Hello, World")"
dostring(message)

getn(table)
This function takes as input argument a table. It returns the number of entries in the
table.

Example:
tmp_table = { a, b, c, d, e}

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 155

Table of ContentsIndex

print (getn(tmp_table)) -–prints "5"

tinsert(table [, pos] , value)
Inserts element value at table position pos, shifting other elements to open space, if nec-
essary. The default value for pos is n+1, where n is the result of getn(table), so that
a call tinsert(t,x) inserts x at the end of table t. This function also sets or incre-
ments the field n of the table to n+1.

Example:
t = {3,6,12,8}
tinsert(t,3,4) -- insert "4" at position 3
print t[3] –- this statement outputs "4" instead of "12"

tonumber(string [, base])
This function has a variety of uses. Its main use is to convert strings to numbers. In
addition, it may be used to check whether a string is a valid numeral. In this case, for
invalid input, nil is returned. Finally, it can be used to convert numerals written in other
bases. For this case, there is a second argument that specifies the base. The base may
be any number between 2 and 36, inclusive. The letters correspond to the digits from 10
(A or a) to 35 (Z or z).

Example:
print(tonumber("10010.3")) -–prints "10010.3"
print(tonumber("kfjdas")) -–prints "nil"
print(tonumber({})) -–prints "nil"
print(tonumber("10010", 2)) -–prints "18"
print(tonumber("1EF", 16)) -–prints "495"

tostring(value)
This function accepts as input all data types and returns a string describing a value. The
function print() automatically uses it to determine how to display the input value. For
input arguments of type string, it returns the string itself. For an input argument of type
number, it returns the number converted to a string in a reasonable format. For complete
control of the conversion from type number to type string, such as the number of signifi-
cant digits to be displayed, the function format() may be used. For the remaining
types, this function returns the type name plus an internal identification (such as the
memory address of the variable).

Example:
test = tostring(print)
-–returns something like "function: 00482100"
test = tostring({})
-–returns something like "table: 00486BA0"
test = tostring(_INPUT)
-–returns something like "userdata(6): 00469A40"
test = tostring("FV") -–returns "FV"

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 156

Table of ContentsIndex

tremove (table [, pos])
Removes from table the element at position pos, shifting other elements to close the
space, if necessary. Returns the value of the removed element. The default value for
pos is n, where n is the result of getn(table), so that a call tremove(t) removes the
last element of table t. This function also sets or decrements the field n of the table to
n-1.

Example:
t = {3, 6, 4, 12, 8}
tremove(t, 2)
print t[2] -– this will output "4"

type(value)
This function returns a string describing the type of the input argument. Its results can
be function, nil, number, string, table or userdata.

String Functions
format(formatstring, e1, e2, ...)
This function returns a formatted version of its variable number of arguments following
the description given in its first argument (which must be a string). The formatstring
follows the same rules as the printf family of standard C functions. The only differ-
ences are that the options/modifiers *, l, L, n, p, and h are not supported, and there is
an extra option, q.

The q option formats a string in a form suitable to be safely read back by the FVX inter-
preter: The string is written between double quotes, and all double quotes, returns, and
backslashes in the string are correctly escaped when written. For instance, the call with
one argument

format("%q", "a string with "quotes" and \n new line")

will produce the string:

"a string with \"quotes\" and \
new line"

Conversions can be applied to the n-th argument in the argument list, rather than the
next unused argument. In this case, the conversion character % is replaced by the
sequence %t$, where t is a decimal digit in the range [1,9], giving the position of the
argument in the argument list. For instance, the call

format("%2$d -> %1$03d", 1, 34)

will result in

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 157

Table of ContentsIndex

"34 -> 001"

The first argument 1 is affected by the format string %1$03d. It is forced to a string
length of three because of 3 in the format string and is padded with two zeros because of
0 which specifies that the string must be padded with zeros if the resulting length is less
than three. The d indicates that it is an integer with signed decimal notation. The sec-
ond argument is affected by the format string %2$d. The 2 indicates the number of the
argument that will be affected and the d indicates that it is output as an integer with
signed decimal notation. The same argument can be affected by more than one format
string. For example

format("%2$d -> %1$03d -> %2$d", 1, 34)

will result in

"34 -> 001 -> 34"

The table below provides the format options that may be used in format strings.

strfind(s, pattern [, init [, plain]])
Looks for the first match of pattern in s. If it finds one, then strfind returns the indices
of s where this occurrence starts and ends; otherwise, it returns nil. If the pattern spec-
ifies captures, the captured strings are returned as extra results. A third, optional numer-
ical argument init specifies where to start the search; its default value is 1, and may be
negative. A value of 1 as a fourth, optional argument plain turns off the pattern match-
ing facilities, so the function does a plain ‘‘find substring’’ operation, with no characters in
pattern being considered ‘‘magic’’.

Character Arg.
Type

Converted To

d, I int signed decimal notation.
o int unsigned octal notation (with leading zero).
x, X int unsigned hexadecimal notation (without a leading 0x or 0X), using abcdef for 0x or ABCDEF

for 0X.
u int unsigned decimal notation.
c int single character, after conversion to unsigned char.
s char * characters from the string are printed until a ‘\0’ is reached or until the number of characters

indicated by the precision have been printed.
f double decimal notation of the form [-]mmm.ddd, where the number of d’s is specified by the precision.

The default precision is 6; a precision of 0 suppresses the decimal point.
e, E double decimal notation of the form [-]m.dddddde[+ or -]xx or [-]m.ddddddE[+ or -

]xx, where the number of d’s is specified by the precision. The default precision is 6; a precision

of 0 suppresses the decimal point.
g, G double %e or %E is used if the exponent is less than -4 or greater than or equal to the precision; otherwise

%f is used. Trailing zeros and a trailing decimal point are not printed.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 158

Table of ContentsIndex

Note: If plain is given, then init must be given as well. Also, two backs-
lashes (\\) will be treated as one character, i.e., one backslash.

Example:
absolute_path = "C:\\Program Files\\FieldView\\FieldView 2023"
start,finish = strfind(absolute_path, "FieldView\\")
--value of "start" is 18, value of "finish" is 27
print (start, finish)

Mathematical Functions
The library provides the following functions:

abs acos asin atan atan2 ceil cos deg exp floor log log10
max min mod rad sin sqrt tan frexp ldexp random randomseed

plus a global variable PI. Most of them are only interfaces to the homonymous functions
in the ANSI C library. Note: For the trigonometric functions, all angles are expressed in
degrees, not radians. The functions deg and rad can be used to convert between radi-
ans and degrees. The function max returns the maximum value of its numeric argu-
ments. Similarly, min returns the minimum. Both can be used with 1 or more
arguments. The functions random and randomseed are interfaces to the simple ran-
dom generator functions rand and srand, provided by ANSI C. (No guarantees can be
given for their statistical properties.) The function random, when called without argu-
ments, returns a pseudo-random real number in the range [0,1]. When called with a
number n, random returns a pseudo-random integer in the range [1,n]. When called
with two arguments, l and u, random returns a pseudo-random integer in the range
[l,u].

Note for FORTRAN and C programmers: When improper arguments are
passed to mathematical functions in FVX, the operation will not cause an error
exit. Instead, a value is returned from the function that corresponds to the
IEEE specification for floating point numbers. Each platform may return
slightly different representations of INFINITY or NAN. On Windows for exam-

ple, sqrt(-1) returns -nan(ind). Thus, the improper use of the sqrt function may
not be detected until the result is used in another operation, such as indexing a table.

Standard I/O Functions
openfile(filename, mode)
This function opens a file in the mode specified in the string mode. It returns a new
file_handle, or, in case of errors, nil plus a string describing the error. This function

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 159

Table of ContentsIndex

does not modify the predefined FVX environment variables _INPUT or _OUTPUT. The
mode string can be any of the following:

"r" - read mode;
"w" - write mode;
"a" - append mode;
"r+" - update mode, all previous data is preserved;
"w+" - update mode, all previous data is erased;
"a+" - append update mode, previous data is preserved,

writing is only allowed at the end of file.

The mode string is exactly what is used in the standard C function fopen(). Note: This
string may also have a "b" at the end, which is needed in the Microsoft Windows plat-
form to open the file in binary mode.

Example:
--open a new file "test.txt" in write mode
file_handle = openfile("test.txt", "w")

--export a coordinate surface and read the data from the file
fv_script("EXPORT COORD coord_surface")
data_handle = openfile("coord_surface", "r")

closefile(handle)
This function closes the given file. It does not modify either _INPUT or _OUTPUT. After-
wards, the handle is no longer valid.

Example:
-–close the file "test.txt"
closefile(file_handle)

readfrom([filename])
This function may be called in two ways. When called with a file name, it opens the
named file, sets its handle as the value of _INPUT, and returns this value. It does not
close the current input file. When called without parameters, it closes the _INPUT file,
and restores stdin as the value of _INPUT. If this function fails, it returns nil, plus a
string describing the error.

If filename starts with a |, then a piped input is opened, via function popen(). Not all
systems implement pipes. Moreover, the number of files that can be open at the same
time is usually limited and depends on the system.

Example:
-–set file_handle as the default handle _INPUT
file_handle = readfrom("test.txt")

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 160

Table of ContentsIndex

-–close the current _INPUT file and set stdin as the new
--_INPUT
readfrom()

remove(filename)
Deletes the file with the given name. If this function fails, it returns nil, plus a string
describing the error.

Example:
--delete the file "test.txt"
remove("test.txt")

rename(name1, name2)
Renames file named name1 to name2. If this function fails, it returns nil, plus a string
describing the error.

Example:
--rename the file "test1.txt" to "test2.txt"
rename("test1.txt", "test2.txt")

read ([filehandle,] format1, ...)
Reads file _INPUT, or filehandle if this argument is given, according to the given for-
mats, which specify what to read. For each format, the function returns a string (or a
number) with the characters read, or nil if it cannot read data with the specified format.
When called without formats, it uses a default format that reads the next line (see below).

The available formats are:

"*n"- reads a number; this is the only format that returns a number instead of a string.
"*l"- reads the next line (skipping the end of line), or nil on end of file. This is the
default format.
"*a"- reads the whole file, starting at the current position. On end of file, it returns the
empty string.
"*w"- reads the next word (maximal sequence of non-white-space characters), skipping
spaces if necessary, or nil on end of file.
"number"- reads a string with up to that number of characters, or nil on end of file.

Example:
--read from current open file (from handle _INPUT) one line
--for each time read() is called
read("*l")

--read the entire contents of file "test3.txt" (with handle
--file_handle) with one call to function read()
read(file_handle, "*a")

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 161

Table of ContentsIndex

write ([filehandle,] value1, ...)
Writes the value of each of its arguments to file _OUTPUT, or to filehandle if this argu-
ment is given. The arguments must be strings or numbers. To write other values, use
tostring or format before write. The character strings "\r" (carriage return) or
"\n" (newline) can be used for line termination. Both may be needed for MS-Windows
style line termination. If this function fails, it returns nil, plus a string describing the
error.

Example:
-- write arguments to current file handle
x = "Hello"
y = ", "
z = "World"
write(x, y, z)

--write arguments to file "test5.txt" with handle
--file_handle_5
write(file_handle_5, x, y, z)

Example:
--export a coordinate surface and read the data from the file
fv_script("EXPORT COORD coord_surface")
data_handle = openfile("coord_surface", "r")

x[i] = read(data_handle, "*n")
-- reads number from first column
y[i] = read(data_handle, "*n")
-- reads number from second column
z[i] = read(data_handle, "*n")
s[i] = read(data_handle, "*n") -- reads the scalar value
line = read(data_handle, "*l") -- goes to the next line

writeto([filename])
This function may be called in two ways. When called with a file name, it opens the
named file, sets its handle as the value of _OUTPUT, and returns this value. It does not
close the current output file. Note that, if the file already exists, then it will be completely
erased with this operation. When called without parameters, this function closes the
_OUTPUT file, and restores stdout as the value of _OUTPUT. If this function fails, it
returns nil, plus a string describing the error.

If filename starts with a |, then a piped input is opened, via function popen(). Not all
systems implement pipes. Moreover, the number of files that can be open at the same
time is usually limited and depends on the system.

Example:
--open the file "test.txt" and return its handle.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 162

Table of ContentsIndex

--test_handle becomes the same as _OUTPUT.
test_handle = writeto("test.txt")

appendto(filename)
Opens a file named filename and sets it as the value of _OUTPUT. Unlike writeto(),
this function does not erase any previous file contents; instead, anything written to the
file is appended to its end. If this function fails, it returns nil, plus a string describing the
error.

Example:
--open "test.txt" and set its handle to _OUTPUT.
--Preserves previous content if this file already exists
appendto("test.txt")

System Facilities Functions
execute(command)
This function is equivalent to the C function system. It passes commands to be exe-
cuted by an operating system shell. It returns a status code, which is system-dependent.
Note: Command must be enclosed in quotes.

Example:
--for Unix/Linux platforms
execute("ls -l")

--for Windows platforms
execute("dir")

print(e1, e2, …)
Receives any number of arguments, and prints their values using the strings returned by
tostring(). This function is not intended for formatted output, but only as a quick way
to show a value, for instance for debugging.

Example:
print("Hello, World")
print("Hello", ",", "World")

test_message = "Hello, World"
print(test_message) -–Output is: Hello, World

CFD Open Post-Processing Functions
These functions provide access to FieldView specific features. The values of the tables
listed as input arguments in the following functions are all not necessarily required. In

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 163

Table of ContentsIndex

most cases, if a field is not specified for the input, the default value for that field is
assumed.

CFD Data I/O
read_dataset(data_input_table)
This function is used to read datasets. It presently supports the following file formats:
PLOT3D, FieldView-UNStructured (both FieldView-UNStructured-split format and Fiel-
dView-UNStructured-combined (grid&results) format) and many other commercial solver
exports and formats. Several examples are outlined below. The input is the table
data_input_table.

It returns dataset_info_table if overall dataset read was successful. Otherwise, it
returns nil plus a string describing the error. For dataset_info_table format
description, see print_dataset_table(dataset_info_table).

The data_input_table form depends on the format of the file being read.

User-defined readers are supported for the data_format field. The user must con-
struct the input table according to the type of reader (Combined or Split). The value for
data_format must match the registered reader name (i.e., the name that would appear
in the Data Input menu). Reader names are case-sensitive with spaces allowed (for
example, "My Reader"). FieldView strips trailing spaces, if present, when a user-defined
reader registers its name, so the FVX value should have no trailing spaces.

Next, we describe the data_input_table for Combined (i.e., Grid & Results in a sin-
gle file) formats, including Direct Reader formats and the FieldView-UNStructured (FV-
UNS) Combined format. Direct readers are used to read AcuSolve, CGNS, FLOW-3D,
FLUENT, TECPLOT 360, ENSIGHT, LS-DYNA, OpenFOAM, scFLOW, SC/Tetra,
scSTREAM, STL, ultraFluidX, VTK and XDB data. Complete details on these readers
are provided in Chapter 1.

The data_format field is “unstructured” for both the FV-UNS Combined and the FV-
UNS Split formats, however the input_parameters subtable structure is different.

For FV-UNS files written by surface sampling, the data_format field may be “sur-
face_sampled_data”.

The Data Input menu (Figure 11 Data Input pulldown menu) aligns FV-UNS Export
files with the commercial solvers that create them, including: Acusim, ANSYS-CFX,
CFD++, COBALT, FLUENT, STAR-CD and STAR-CCM+. The data_input_table can
be configured to work explicitly with any of these solver exports. Alternately, the simple
choice of “unstructured” for the data_format field will also work.

data_input_table
Combined (single file Grid & Results) formats

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 164

Table of ContentsIndex

Field Data
Type

Comments Default

data_format string “unstructured”,
“acusolve_direct”, “acusolve_unstructured”,
“ansys-cfx_unstructured”,
“cfd++_unstructured”,
“cgns_structured”, “cgns_unstructured”,
“cgns_unstructured/hybrid”,
“cobalt_unstructured”,
“flow-3d animation”, “flow-3d restart”,
“fluent_unstructured”,
“tecplot_360”,
"ensight",
“lsdyna”, “lsdyna_d3plot”,
"openfoam",
“sc_flow”, “sc_stream”, “sc_tetra”,
“starccm_unstructured”, “starcd_unstructured”,
“stl”,
“surface_sampled_data”,
“ufx”,
“vtk_structured”,
“vtk_unstructured/hybrid”,
"xdb_import"

n/a

server_config string name of server config file without the .srv
extension

server_append string “on” or “off” “off”

input_parameters table n/a

name string name of the input data file n/a
options table

input_mode string “replace” or “append” “replace”

transient string “on” or “off” “off”

changing_number_of_
grids_over_time

string “on” or “off”
Note: This option applies to only some readers.

“off”

boundary_only string “on” or “off” “off”

grid_processing string “less”, “more” or “balanced” “balanced”

initial_time_step string or
number

'first', 'last', or <integer number>
If data_format is "acusolve_direct", “flow-3d
animation”, “flow-3d restart” or "openfoam",
otherwise ignored; takes precedence if
initial_solution_time and/or

initial_time_index are present.

'first'

initial_solution_time string or
number

'first', 'last', or <number>
If data_format is "acusolve_direct", “flow-3d
animation”, “flow-3d restart” or "openfoam",
otherwise ignored; takes precedence if
initial_time_index is present, ignored if

initial_time_step is present.

'first'

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 165

Table of ContentsIndex

Example:
data_input_table = {

data_format = "unstructured",
input_parameters = {

-- combined grid and results file
name = "combinedfile.uns",

options = {
input_mode = "replace",
transient = "off"

}
}

}
read_dataset(data_input_table)

Example:
data_input_table = {

data_format = "lsdyna",
input_parameters = {

name = "d3plot"
} -- input_parameters

}
read_dataset(data_input_table)

initial_time_index string or
number

'first', 'last', or <positive integer>
If data_format is "acusolve_direct", “flow-3d
animation”, “flow-3d restart” or "openfoam",
otherwise ignored; ignored if
initial_time_step or

initial_solution_time is present.

Use this field if the actual values of the time steps
and solution times are not known prior to the data
read.

'first'

read_as_steady_state string “on” or “off”
If data_format is "acusolve_direct", “flow-3d
animation”, “flow-3d restart” or "openfoam",
otherwise ignored

“off”

extended_variables string “on” or “off”
If data_format is "acusolve_direct", otherwise
ignored

“off”

duplicate_boundaries string “on” or “off”
If data_format is "acusolve_direct", otherwise
ignored
Note: FieldView 15.1 introduced in change of
default FVX behavior for duplicate boundaries,
compared to older versions

“off”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 166

Table of ContentsIndex

Full FVX support has been provided to import XDB files. A sample FVX listing below
illustrates the correct syntax.

local dataset_1_info_table = read_dataset({
 data_format = "xdb_import",
 input_parameters = {
 name = "/usr3/xdb/spitfire.xdb",
 options = {
 input_mode = "replace",
 boundary_only = "off"
 } -- options
 } -- input_parameters
}) -- read_dataset

Next, we describe the data_input_table for Split (i.e., Grid & Results in separate
files) formats, including the FieldView-UNStructured (FV-UNS) Split, NPARC/WIND and
WIND US formats.

The data_format field is “unstructured” for both the FV-UNS Combined and the FV-
UNS Split formats, however the input_parameters subtable structure is different.

For FV-UNS files written by surface sampling, the data_format field may be “sur-
face_sampled_data”.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 167

Table of ContentsIndex

Example:
data_input_table = {

data_format = "unstructured",
-- data_format = "nparc/wind",
input_parameters = {

-- grid file information
grid_file = {

name = "gridfile.uns",

data_input_table
Split (separate Grid & Results files) formats
Field Data Type Comments Default

data_format string

“unstructured”,
“nparc/wind”,
“acusolve_unstructured”,
“ansys-cfx_unstructured”,
“cfd++_unstructured”,
“cobalt_unstructured”,
"fluent_cff_cas/dat_direct",“fluent_cas/dat_direct”,
“fluent_unstructured”,
“starcd_unstructured”,
“starccm_unstructured”,
“surface_sampled_data”,
"wind_structured",
"wind_unstructured"

n/a

server_config string name of server config file without the .srv
extension

server_append string “on” or “off” “off”

input_parameters table n/a

grid_file table n/a

 name string
name of the input FieldView-UNStructured-grid
data file, NPARC/WIND-grid data file

none

 options table n/a

 input_mode string “replace” or “append” “replace”
changing_number_of_
grids_over_time

string “on” or “off”
Note: This option applies to only some readers.

“off”

 transient string “on” or “off” “off”
 boundary_only string “on” or “off” “off”

 grid_processing string “less”, “more” or “balanced”
Ignored if present in the options subtable for

results_file (it will be an error if present but

set to an invalid value)

“balanced”

results_file table n/a

 name string
name of the input FieldView-UNStructured-results
data file, NPARC/WIND-results data file

none

 options table n/a

 input_mode string “replace” or “append” “replace”

 transient string “on” or “off” “off”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 168

Table of ContentsIndex

options = {
input_mode = "replace",
transient = "off"

}
},-- end grid file information

-- results file information
results_file = {

name = "resultsfile.uns",
options = {

input_mode = "replace",
transient = "off"

}
}-- end results file information

}-- end input parameters

}-- end data_input_table

read_dataset(data_input_table)

The data_input_table to support the read_dataset() command for PLOT3D &
OVERFLOW-2 formats is:

 data_input_table - PLOT3D & OVERFLOW-2 format
Field Data Type Comments Default
data_format string “plot3d” or “overflow-2”

Note: Reading the same data using “plot3d” vs.
“overflow-2” will result in a different data table and
different function names in FieldView.

n/a

server_config string name of server config file without the .srv
extension

server_append string “on” or “off” “off”

input_parameters table n/a

auto_detect string “on” or “off” “off”

xyz_file table

name string name of the input xyz data file

options table plot3d_or_overflow-2_options

grid_point_increment number 1

q_file table

name string name of the input ‘q’ file

options table plot3d_or_overflow-2_options

function_file table

name string name of the input function file

options table plot3d_or_overflow-2_options

names_filename string optional

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 169

Table of ContentsIndex

Example:
--set data file options
plot3d_or_overflow-2_options = {

format = "binary", -- default: binary
--format= "dp_unformatted",--double precision unformatted
input_mode = "replace", -- default: replace
coords = "3d", -- default: 3d
multi_grid = "on", -- default: off
iblanks = "on", -- default: off
transient = "off", -- default: off
}

--prepare argument data_input_table
data_input_table = {

data_format = "plot3d",
input_parameters = {

--xyz file information
xyz_file = {
name = "impeller3_xyz",
grid_point_increment = 1,
options = plot3d_or_overflow-2_options,
},

plot3d_or_overflow-2_options
This is the specification for the options field in the table field input_parameters which
itself is a field of the table data_input_table.

Field Data Type Comments Default
format string “binary”, “formatted”, “unformatted” or

“dp_unformatted”
“binary”

input_mode string “append” or “replace” “replace”

auto_partition string “on” or “off” “off”

ghost_cells number 0, 1 or 2 0

coords string coordinate dimension, i.e., “2d” or “3d” “3d”

multi_grid string “on” or “off” “off”`

iblanks string “on” or “off” “off”

transient string “on” or “off” “off”

grid_processing string “less”, “more” or “balanced”
Ignored if present in the options subtable for

q_file or function_file (it will be an error

if present but set to an invalid value)

“balanced”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 170

Table of ContentsIndex

--q file information
q_file = {
name = "impeller3_abs.q",
options = plot3d_or_overflow-2_options,
},

}, --end input_parameters table

} --end data_input_table

--call function to read dataset
read_dataset(data_input_table)

Example:
p3ddata= {

data_format = "plot3d",
input_parameters = {

xyz_file = {
name = "x.1100",
options = {

format="unformatted",
multi_grid = "on",
iblanks = "on",

} -- options
},--xyz file
q_file = {
name = "q.1100",
options = {

format="unformatted",
multi_grid = "on",
iblanks = "on",

} -- options
},--q file

}--input_parameters
}-- p3ddata
read_dataset(p3ddata)

An example to read an OVERFLOW-2 dataset follows here:

--Set data file options
plot3d_or_overflow-2_options = {

format = "unformatted",
input_mode = "replace",

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 171

Table of ContentsIndex

coords = "3d",
multi_grid = "off",
iblanks = "on",
transient = "off",

}
--Prepare argument data_input_table
data_input_table = {

data_format = "overflow-2",

input_parameters = {
--xyz file information
xyz_file = {

name = "grid.in",
grid_point_increment = 1,
options = plot3d_or_overflow-2_options,
},

--q file information
q_file = {

name = "q.gaminf",
options = plot3d_or_overflow-2_options,
},

}, --end input_parameters table
} --end data_input_table

--Call function to read dataset
read_dataset(data_input_table)

Next, we describe the data_input_table for the Pratt & Whitney Common File for-
mat. (Please contact support@tecplot.com for information on the availability of this
reader.)

data_input_table
pw common
Field Data

Type
Comments Default

data_format string “pw common” n/a

server_config string name of server config file without the .srv
extension

server_append string “on” or “off” “off”

input_parameters table n/a

 xyz_file table

 name string name of the input data file n/a
 options table

 input_mode string “replace” or “append” “replace”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 172

Table of ContentsIndex

Finally, we describe the data_input_table to be able to append a dataset which has
been created using the Dataset Sampling tool (see Dataset Sampling in Working with
FieldView).

In order to be able to append a sampled dataset, the grid target from which this was
derived must be read into FieldView first. A simple example to illustrate this follows
here:

grid_target_table = read_dataset({
data_format = "unstructured",
input_parameters = {

name = "./catheter_mod.fv",
options = {

input_mode = "replace",
boundary_only = "off"

} -- options
} -- input_parameters

}) -- read_dataset

sampled_dataset_table = read_dataset({
data_format = "append_sampled_data",
input_parameters = {

name = "./base_to_mod_sampled.uns"
} -- input_parameters

}) -- read_dataset

print_dataset_table(dataset_info_table)
This function is used to provide text output of the dataset_info_table returned by
the function read_dataset(). The output is sent to stdout. The input is the table
dataset_info_table. This is the table returned by the function read_dataset().
The output is text representing the dataset. (See additional notes following the below
table.)

 grid_processing string “less”, “more” or “balanced” “balanced”

data_input_table
Append Sampled Data
Field Data Type Comments Default
data_format string “append_sampled_data” n/a

server_config string name of server config file without the .srv
extension

server_append string “on” or “off” “off”

input_parameters table n/a

name string name of the input data file n/a

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 173

Table of ContentsIndex

dataset_info_table
This table is the output from the function read_dataset(). It represents the dataset read-
in from a file. If the dataset read was completely successful, the status field will be nil.
Otherwise, it will be a table detailing the failure of the operation. If successful, the specific
content of the table is dependent on the input table to the function. If table read is unsuccessful,
this table will not be returned.
Field Data Type Comments Default
data_format string n/a

server_config string name of server config file without the .srv
extension

server_append string “on” or “off” “off”

id number dataset number

grid_file string

results_file string may or may not be present

function_file string may or may not be present

names_file string may or may not be present

cylindrical string “yes” or “no”, if id >0 n/a

machine_axis string “X” or “Z”, if cylindrical=“yes”

transient string “yes” or “no”, if id >0 n/a

cur_time_step number if transient=“yes” n/a

has_solution_times string if transient=“yes”, “yes” or “no” n/a

cur_solution_time number if transient=“yes” and if

 has_solution_time=“yes”

n/a

changing_number_of_grids_
over_time

string if transient=“yes”

Note: This option applies to only some readers.
n/a

rmin number if cylindrical=“yes”

rmax number if cylindrical=“yes”

tmin number if cylindrical=“yes”

tmax number if cylindrical=“yes”

xmin number if cylindrical=“no” or machine_axis=“X”

xmax number if cylindrical=“no” or machine_axis=“X”

ymin number if cylindrical=“no”

ymax number if cylindrical=“no”

zmin number if cylindrical=“no” or machine_axis=“Z”

zmax number if cylindrical=“no” or machine_axis=“Z”

num_grids number total number of grids in the dataset

grid_info table Table of tables, each with grid information. No. of
entries depends on num_grids

structured string “yes” or “no”

num_nodes number

num_cells number if structured=“yes”

num_elements number if structured=“no”

imax number

jmax number

kmax number

q_fsmach number if data_format=“plot3d”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 174

Table of ContentsIndex

Example:
--get dataset table
t = read_dataset(data_input_table)

--call print function with handle "t"
print_dataset_table(t)

Note: Function print_dataset_table() will produce an organized listing of your
dataset's characteristics. The dataset_info_table can also be viewed with dumpall(data-
set_info_table) to see what table fields are available for other scripting operations, such
as print(dataset_info_table.grid_info[1].num_nodes) to print the number
of nodes in grid 1.

q_alpha number if data_format=“plot3d”

q_re number if data_format=“plot3d”

q_time number if data_format=“plot3d”

wind_gamma number if data_format=“nparc/wind”

wind_pinf number if data_format=“nparc/wind”

wind_tinf number if data_format=“nparc/wind”

wind_rgas number if data_format=“nparc/wind”

num_regions number total number of regions in the dataset

region_info table Table of tables, each with region information. No.
of entries depends on num_regions.

name string name of the region

revolutions_per_second number

blades_per_row number

period number

num_grids number

grid_list table A table listing grids in the region, i.e., {<number>,
<number>, ...}

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 175

Table of ContentsIndex

Creation and Modification of Post-Processing Objects
These functions provide an automated way of accomplishing surface creation, modifica-
tion and deletion for a given dataset.

The following functions are used to create surfaces and rakes from existing datasets.
Each takes a table as input and outputs a handle for the created surface or rake. The
handle may then be used for calls to generic functions modify(), delete() and
query().

create_boundary(boundary_table)
create_comp(comp_table)
create_iso(iso_table)
create_coord(coord_table)
create_streamline(streamline_table)
read_particle_paths(particle_path_data)

Functions to create Annotation objects are:
create_text(text_description)
create_arrow(arrow_description)

The following summary indicates input table fields shared by multiple functions. Individ-
ual fields are explained in subsequent sections according to their categorical use.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 176

Table of ContentsIndex

** see display_attributes

Common input fields for surfaces, rakes & annotation

b
o
u
n
d
a
r
y
_
t
a
b
l
e

c
o
m
p
_
t
a
b
l
e

i
s
o
_
t
a
b
l
e

c
o
o
r
d
_
t
a
b
l
e

s
t
r
e
a
m
l
i
n
e
_
t
a
b
l
e

p
a
r
t
i
c
l
e
_
p
a
t
h
_
d
a
t
a

t
e
x
t
_
d
e
s
c
r
i
p
t
i
o
n

a
r
r
o
w
_
d
e
s
c
r
i
p
t
i
o
n

Field

contours * * * *

dataset * * * * * *

display_type * * * * ** **

geometric_color * * * * * * * *

line_type * * * * * *

number_of_contours * * * *

scalar_func * * * * * *

scalar_colormap * * * * * *

scalar_range * * * * * *

show_mesh * * * *

show_legend * * * * * *

show_minmax * * * *

threshold_func * * * *

threshold_range * * * *

transparency * * * * * *

vector_func * * * * *

visibility * * * * * * * *

boundary_table
This table represents a boundary surface.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 177

Table of ContentsIndex

Field Data Type Comments Default
dataset number dataset number

current
dataset

types table
This is the boundary types option. “all” or “none”
or table of boundary types such as {“top_wall”,
“bot_wall”, “inlet”, “outlet”}.

“none”

flip_front_back string
"on" or "off" - Determines which side of a
boundary type composed of collocated meshs will
be visible.

"off"

geometric_color number or
string

“white”, “black”, or
number ranging from 1 to 8

show_mesh string “on” or “off” “off”

contours string "none", "black", "white", "scalar", "geometric"
Setting contours to any value other than "none"

has no effect if scalar_func is "none".

"none"

number_of_contours number If "Filled Contour" is OFF, max = 500
If "Filled Contour" is ON, max = 100, if value
specified is higher, level reduced to 100.

16

transparency number Range is from 0 to 1; level is rounded to nearest
value in 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1. Query returns above values.

0

line_type string "thin", "medium", "thick" "thin"

scalar_func string Scalar function name or “none” “none”

scalar_range table double_range n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

use_local string “on” or “off” “off”

scalar_colormap table See Scalar Colormap Specification n/a
show_legend string “on” or “off” see FVX Legends “off”

show_minmax table “on” or “off” see FVX Show Min Max Annotation “off”
vector_func string Vector function name or “none”

When vector_func has been specified for a

surface, the display_type parameter will have

no visible effect because the surface will be
displayed as vectors.

“none”

threshold_func string Threshold function name or “none” “none”

threshold_range table double_range n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

X_clip table
double_range
Only valid with Cartesian or RTX cylindrical
coordinate systems

n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

Y_clip table
double_range
Only valid with Cartesian coordinate systems

n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 178

Table of ContentsIndex

Example:
boundary_table1 = {

scalar_func = "Normalized density [PLOT3D]",
types = {"body","wing"},
display_type = "smooth_shading"

}

--create boundary surface and assign handle to
--"surface_handle1"
surface_handle1 = create_boundary(boundary_table1)

boundary_table2 = {
vector_func = "Velocity Vectors [PLOT3D]",
threshold_func = "X",
threshold_range = {min=2.4,max=2.5},
types = {"tail"}

}

--create boundary surface and assign handle to
--"surface_handle2"
surface_handle2 = create_boundary(boundary_table2)

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

Z_clip table
double_range
Only valid with Cartesian or RTZ cylindrical
coordinate systems

n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

R_clip table
double_range
Only valid with cylindrical coordinate systems

n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

T_clip table
double_range
Only valid with cylindrical coordinate systems

n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

vector_options table See Vector Options n/a

visibility string “on” or “off” “on”
display_type string “constant_shading”, “faceted_shading”,

“smooth_shading”, “mesh_shading”,
“contour_lines”, “outline_edges”, “vertices”,
“shaded_vertices”

“mesh_
shading”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 179

Table of ContentsIndex

A subtable named 'material' has been added to the input table for the cre-
ate_boundary() function:

 material = {
 name = "Glossy Paint",
 -- Some materials also need a color, and there will be a
 -- default color used for each of those materials.
 -- The 'color' subfield can be used to change that color.
 -- It will be ignored unless the material is
 -- Aluminum
 -- Glass
 -- Glossy or Matte Paint
 -- Shiny or Dull Plastic

 -- When using query(), the returned 'material' subtable will
 -- have the 'color' subfield only when applicable.

 color = {
 red = <number>, -- Valid range from 0 through 255
 green = <number>,
 blue = <number>
 } -- color

 } -- material

Create / Modify
The 'material' subtable will be accepted as valid input for boundary surface objects
only, under the following conditions:

'scalar_func' is "none"

'display_type' is "faceted_shading" or "smooth_shading"

It will be an error if both of these conditions are not met.

The following is a list of material names that will be recognized:

"None"
"Aluminum"
"Brass"
"Bronze"
"Chrome"
"Copper"
"Gold"
"Iron"
"Silver"

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 180

Table of ContentsIndex

"Steel"
"Titanium"
"Glass"
"Rubber"
"Glossy Paint"
"Matte Paint"
"Shiny Plastic"
"Dull Plastic"

As Tecplot Inc. distributes additional materials in future releases, they will also be
accepted.

The 'color' subfield of the material input table will be ignored unless the current
material allows color to be specified. The materials that allow color to be specified are:

"Aluminum"
"Glass"
"Glossy Paint"
"Matte Paint"
"Shiny Plastic"
"Dull Plastic

Query
The 'material' field will be returned in the query table if the boundary surface is
using one.

The 'color' subfield of the material input table will be present only if the current
material allows color to be specified.

Environments
An FVX command has been introduced:

set_environment(input_table)

input_table

The table argument to set_environment() contains one or more of these input tables:
Field Data Type Comments Default
window number or

string
number or “current” 1

environment string
“Default”, “Courtyard”, “Street”, “Sky”,
“Sky and sea” or “Sky and grass”

background table

color
number or
string

“white”, “black”, or
number ranging from 1 to 8

image string “none” or filename, including path

position string “center”, “stretch”, or “fit”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 181

Table of ContentsIndex

If not explicitly set by the user, color will be "black", image will be "none" and position will
be "center". If explicitly set, the values will persist.

Example:

set_environment({
 { window = "current",
 environment = "Courtyard",
 background = {
 color = 4,
 image = "/home/fv-test/Pictures/img2.png",
 position = "stretch"
 }, -- background
 },
 }) -- set_environment

The environment is a windows-level attribute, not an object attribute. Window corre-
sponds to the number visible above split sub-windows visible in the FieldView graphics
window. If a value for window is not provided, it defaults to 1.

It is required that the environment or background field be included in the
input_table.

By taking a table of tables, set_environment() can set up multiple windows with
one call.

output = set_environment({
 {
 window = 1,
 environment = "Courtyard",
 },
 {
 window = 2,
 environment = "Street",
 },
 {
 window = 3,
 environment = "Sky and sea",
 },
 {
 window = 4,
 environment = "Sky and grass",
 },
}
)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 182

Table of ContentsIndex

comp_table
This table of fields represents a computational surface.
Field Data Type Comments Default
dataset number dataset number current

dataset
grid number number of the desired grid

axis string “I” or “J” or “K” “I”

I_inc number

I_axis table if axis =“I”, triple_range, else double_range

min number or
string

“*” sets min to the value of abs_min
(returned by query())

current number if axis =“I”

max number or
string

“*” sets max to the value of abs_max
(returned by query())

J_inc number

J_axis table if axis =“J”, triple_range, else double_range

min number or
string

“*” sets min to the value of abs_min
(returned by query())

current number if axis =“J”

max number or
string

“*” sets max to the value of abs_max
(returned by query())

K_inc number

K_axis table if axis =“K”, triple_range, else double_range

min number or
string

“*” sets min to the value of abs_min
(returned by query())

current number if axis =“K”

max number or
string

“*” sets max to the value of abs_max
(returned by query())

geometric_color number or
string

“white”, “black”, or
number ranging from 1 to 8

show_mesh string “on” or “off” “off”

contours string "none", "black", "white", "scalar", "geometric"
Setting contours to any value other than "none"

has no effect if scalar_func is "none".

"none"

number_of_contours number If "Filled Contour" is OFF, max = 500
If "Filled Contour" is ON, max = 100, if value
specified is higher, level reduced to 100.

16

transparency number Range is from 0 to 1; level is rounded to nearest
value in 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1. Query returns above values.

0

line_type string "thin", "medium", "thick" "thin"

scalar_func string Scalar function name or “none” “none”

scalar_range table double_range n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

use_local string “on” or “off” “off”

scalar_colormap table See Scalar Colormap Specification n/a
show_legend string “on” or “off” see FVX Legends "off"

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 183

Table of ContentsIndex

Example:
--define computational surface
comp_table = {

dataset = 3,
grid = 2,
axis = "I",
I_inc = 1,

I_axis = {
min = 1,
current = 1,
max = 20,

},

scalar_func = “Density (Q1)”,
vector_func = “Velocity Vectors [PLOT3D]”,

threshold_func = “Density (Q1)”,
threshold_range = {

min = 0.75,
max = 1.01,

},

visibility = "on",
}

-– call function and assign handle to "c"
c = create_comp(comp_table)

show_minmax table “on” or “off” see FVX Show Min Max Annotation “off”
threshold_func string threshold function name or “none” “none”

threshold_range table double_range

min number or
string

“*” sets min to the value of abs_min
(returned by query())

max number or
string

“*” sets max to the value of abs_max
(returned by query())

vector_func string vector function name or “none”
When vector_func has been specified for a

surface, the display_type parameter will have

no visible effect because the surface will be
displayed as vectors.

“none”

vector_options table See Vector Options n/a
visibility string “on” or “off” “on”

display_type string “constant_shading”, “faceted_shading”,
“smooth_shading”, “mesh_shading”,
“contour_lines”, “vertices”, “shaded_vertices”

“mesh_
shading”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 184

Table of ContentsIndex

iso_table
This table represents an iso-surface.
Field Data Type Comments Default
dataset number dataset number current dataset

iso_func string or table iso function name if data type is string or mode and

subtables if data type is table, REQUIRED
mode string “point_and_normal” or “points_in_plane”

pt1 table { x, y, z }

pt2 table { x, y, z }

pt3 table { x, y, z } exists if mode =“points_in_plane”

iso_value table triple_range,

min number or
string

“*” sets min to the value of abs_min
(returned by query())

current number

max number or
string

“*” sets max to the value of abs_max
(returned by query())

geometric_color number or
string

“white”, “black”, or
number ranging from 1 to 8

show_mesh string “on” or “off” “off”

unrolled string “on” or “off” “off”

contours string "none", "black", "white", "scalar", "geometric"
Setting contours to any value other than "none"

has no effect if scalar_func is "none".

"none"

number_of_contours number If "Filled Contour" is OFF, max = 500
If "Filled Contour" is ON, max = 100, if value
specified is higher, level reduced to 100.

16

transparency number Range is from 0 to 1; level is rounded to nearest
value in 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1. Query returns above values.

0

line_type string "thin", "medium", "thick" "thin"

scalar_func string Scalar function name or “none” “none”

scalar_range table double_range n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

use_local string “on” or “off” “off”

scalar_colormap table See Scalar Colormap Specification n/a
show_legend string “on” or “off” see FVX Legends "off"

show_minmax table “on” or “off” see FVX Show Min Max Annotation “off”
vector_func string Vector function name or “none”

When vector_func has been specified for a

surface, the display_type parameter will have

no visible effect because the surface will be
displayed as vectors.

“none”

vector_options table See Vector Options n/a
threshold_func string Threshold function name or “none” “none”

threshold_range table double_range

min number or
string

“*” sets min to the value of abs_min
(returned by query())

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 185

Table of ContentsIndex

Example:
--define iso surface
iso_table = {

dataset = 2,
iso_func = {

mode = "point_and_normal",
pt1 = {1,0,0},
pt2 = {1,1,0},

},
iso_value = {

min = -10,
current = 0,
max = 20,

},
scalar_func = "Cp [PLOT3D]",
vector_func = "none",
threshold_func = "Enthalpy [PLOT3D]",
threshold_range = {

min = 2.4,
max = 2.5,

},
visibility = "on",

}

--create iso surface and assign handle to variable "s"
s = create_iso(iso_table)

max number or
string

“*” sets max to the value of abs_max
(returned by query())

visibility string “on” or “off” “on”

display_type string “constant_shading”, “faceted_shading”,
“smooth_shading”, “mesh_shading”,
“contour_lines”, “crinkle”, “vertices”,
“shaded_vertices”

“constant_shading”

coord_table
This table represents a co-ordinate surface.
Field Data Type Comments Default
dataset number dataset number current

dataset
axis string Cartesian: “X” or “Y” or “Z”.

RTZ cylindrical: “R” or “T” or “Z”.
RTX cylindrical: “R” or “T” or “X”.

“X” or “R”

geometric_color number or
string

“white”, “black”, or
number ranging from 1 to 8

show_mesh string “on” or “off” “off”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 186

Table of ContentsIndex

contours string "none", "black", "white", "scalar", "geometric"
Setting contours to any value other than "none"

has no effect if scalar_func is "none".

"none"

number_of_contours number If "Filled Contour" is OFF, max = 500
If "Filled Contour" is ON, max = 100, if value
specified is higher, level reduced to 100.

16

transparency number Range is from 0 to 1; level is rounded to nearest
value in 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1. Query returns above values.

0

line_type string "thin", "medium", "thick" "thin"

scalar_colormap table See table Scalar Colormap Specification n/a

scalar_func string Scalar function name or “none” “none”

scalar_range table double_range n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

use_local string “on” or “off” “off”

scalar_colormap table See Scalar Colormap Specification n/a
show_legend string “on” or “off” see FVX Legends "off"

show_minmax table “on” or “off” see FVX Show Min Max Annotation “off”
vector_func string Vector function name or “none”

When vector_func has been specified for a

surface, the display_type parameter will have

no visible effect because the surface will be
displayed as vectors.

“none”

vector_options table See Vector Options n/a
threshold_func string Threshold function name or “none” “none”

threshold_range table double_range

min number or
string

“*” sets min to the value of abs_min
(returned by query())

max number or
string

“*” sets max to the value of abs_max
(returned by query())

visibility string “on” or “off” “on”

X_axis table if axis =“X”, triple_range, else double_range.

Exists if Cartesian or RTX cylindrical.
min number or

string
“*” sets min to the value of abs_min
(returned by query())

current number if axis =“X”

max number or
string

“*” sets max to the value of abs_max
(returned by query())

Y_axis table if axis =“Y”, triple_range, else double_range.

Exists if Cartesian.
min number or

string
“*” sets min to the value of abs_min
(returned by query())

current number if axis =“Y”

max number or
string

“*” sets max to the value of abs_max
(returned by query())

R_axis table if axis =“R”, triple_range, else double_range.

Exists if cylindrical.
min number or

string
“*” sets min to the value of abs_min
(returned by query())

current number if axis =“R”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 187

Table of ContentsIndex

FVX support is included for ruled grids for Coordinate surfaces created on Cartesian
datasets. Two fields, ruled_grid and ruled_grid_options (a table), are
included in the input and query tables for Coordinate surfaces.

max number or
string

“*” sets max to the value of abs_max
(returned by query())

T_axis table if axis =“T”, triple_range, else double_range.

Exists if cylindrical.
min number or

string
“*” sets min to the value of abs_min
(returned by query())

current number if axis =“T”

max number or
string

“*” sets max to the value of abs_max
(returned by query())

Z_axis table if axis =“Z”, triple_range, else double_range.

Exists if Cartesian or RTZ cylindrical.
min number or

string
“*” sets min to the value of abs_min
(returned by query())

current number if axis =“Z”

max number or
string

“*” sets max to the value of abs_max
(returned by query())

display_type string “constant_shading”, “smooth_shading”,
“mesh_shading”, “contour_lines”, “crinkle”,
“vertices”, “shaded_vertices”

“mesh_
shading”

sweep_steps number Range is from 3 to 32767. 25

vector_options table See Vector Options n/a

ruled_grid_subtable

This is a subtable of coord_table.

Field Data Type Comments Default
ruled_grid string “on” or “off” “off”

ruled_grid_options table

color number or
string

“white”, “black” or number ranging from 1 to 8

font

string “lee”, “lee bold”, “lee italic”, “lee bold italic”,
“leemono”, “leemono bold”, “leemono italic”,
“leemono bold italic”, “leese”, “leese bold”, “noto”,
“roman sans serif”, “roman”, “italics”, “script”

“lee”

size number integer to select font size, range 1 to 100 10

horizontal_axis table

label
string “X” or “Y” or “Z”, READ ONLY

Determined by the current value of coord_table
‘axis’ field.

interval

number “default”, float greater than 0
“default” is an input value only; provided as a way
to get back to the default calculated value. A
subsequent query() will return the default calculated
value.

grid_lines string “on” or “off” “on”
tick_marks string “on” or “off” “on”

labels string “on” or “off” “on”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 188

Table of ContentsIndex

Example:
--define coordinate surface
coord_table = {

dataset = 1,
scalar_func = "Pressure [PLOT3D]",
vector_func = "Vorticity Vectors [PLOT3D]",

threshold_func = "Density (Q1)",
threshold_range = {

min = 0.75,
max = 0.82,
},

visibility = "on",

axis = "X",
X_axis = {

min = -6,
current = -1.1,
max = 8,
}

}

--create coordinate surface and assign handle to "c"
c = create_coord(coord_table)

labels_parameters table

numerical_format string “floating_point” or “exponential” “floating_
point”

decimal_places number integer to select number of significant digits in
labels, range is 0-6

3

vertical_axis table

label
string “X” or “Y” or “Z”, READ ONLY

Determined by the current value of coord_table
‘axis’ field.

interval

number “default”, float greater than 0
“default” is an input value only; provided as a way
to get back to the default calculated value. A
subsequent query() will return the default calculated
value.

grid_lines string “on” or “off” “on”

tick_marks string “on” or “off” “on”

labels string “on” or “off” “on”

labels_parameters table

numerical_format string “floating_point” or “exponential” “floating_
point”

decimal_places number integer to select number of significant digits in
labels, range is 0-6

3

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 189

Table of ContentsIndex

There are 6 different formats for the seeding_input_table. Choice of a particular
format depends on the values of seed_coord and mode fields:

streamline_table

This table is the input argument for create_streamline() function.
Field Data Type Comments Default
vector_func string

Vector function name. The field is required for
create_streamline().

n/a

dataset number dataset number
current
dataset

geometric_color number or
string

“white”, “black”, or,
number ranging from 1 to 8

scalar_func string Scalar function name or “none” “none”

scalar_range table double_range n/a

min
number or
string

“*” sets min to the value of abs_min
(returned by query())

n/a

max
number or
string

“*” sets max to the value of abs_max
(returned by query())

n/a

use_local string “on” or “off” “off”

scalar_colormap table See table Scalar Colormap Specification n/a
show_legend string “on” or “off” see FVX Legends "off"

line_type string "thin", "medium", "thick" "thin"

transparency number Range is from 0 to 1; level is rounded to nearest
value in 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1. Query returns above values.

0

visibility string “on” or “off” “on”

seeding table
seeding_input_table

The presence of the field (table) will re-seed the
rake, deleting seeds that may have already existed.

n/a

display_seeds string “on” or “off” “on”

calculation_parameters table

direction string “forward” or “backward” or “both” “forward”

step number Number of steps, an integer number. 3

time_limit
string or
number

“none” or positive real number. “none”

release_interval number
Positive integer number. How often new particles
are released for streaklines.

3

duration number
Positive integer number. For how long new
particles are released for streaklines.

1

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 190

Table of ContentsIndex

The appropriate subtables must be present for the specified value of seed_coord. It
will not be an error if other subtables are also present; they will be ignored. For example,
seed_coord="XYZ" requires that the subtables "x", "y", and "z" be present; if an "i"
subtable is also present, it will be simply ignored.

Possible Errors:
• There are gaps in the seeds subtable of the seeding_input_table. In other

words, seeds must appear in a continuous block from seed number 1 to the total
number of seeds.

• The subtables contain non-numerical data.

seeding_input_table formats for seeding a surface are:

seeding_input_table Formats

seed_coord
mode

"seed_a_surface" "add"

"IJK_real" Format 1 Format 4

"XYZ" Format 1 Format 5

"RTZ" Format 1 Format 6

"IJK_int" Format 2 Format 3

seeding_input_table ; Format 1
This table is an input argument for streamline_table described above.
Field Data Type Comments Default
seed_coord string “IJK_real”, or “XYZ”, or “RTZ”. none

mode string “seed_a_surface” none

seeding_surface handle A surface handle. none

seeds_to_add number
How many seeds to add on a seeding surface.
Positive integer number.

none

seeding_input_table ; Format 2
This table is an input argument for streamline_table described above.
Field Data Type Comments Default
seed_coord string “IJK_int” none

mode string “seed_a_surface” none

seeding_surface string A surface handle. none

inc number
Whether to seed on every grid point (inc=1), every
other grid point (inc=2), etc. Positive integer
number.

none

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 191

Table of ContentsIndex

Note: If any i, j, or k values are specified as real numbers, they will be trun-
cated to integers. For example, if i={1.2, 2.9}, it will be transformed to
i={1, 2}.

Note: Real i, j, and k values may be used to place a seed between grid
nodes.

seeding_input_table ; Format 3
This table is an input argument for streamline_table described above.
Field Data Type Comments Default
seed_coord string “IJK_int” none

mode string “add” none

seeds table Table of seed points; I, J and K are in their
respective tables within this table

none

i table Table of integer ‘I’ values none

j table Table of integer ‘J’ values none

k table Table of integer ‘K’ values none

 grid table Table of grid numbers. Optional. One grid
number for each seed.

Grid 1 in the
current dataset.

seeding_input_table ; Format 4
This table is an input argument for streamline_table described above.
Field Data Type Comments Default
seed_coord string “IJK_real”. none

mode string “add” none

seeds table
Table of seed points; I, J and K are in their
respective tables within this table

none

i table Table of real ‘I’ values none

j table Table of real ‘J’ values none

k table Table of real ‘K’ values none

 grid table
Table of grid numbers. Optional. One grid
number for each seed.

Grid 1 in the
current dataset.

seeding_input_table ; Format 5
This table is an input argument for streamline_table described above.
Field Data Type Comments Default
seed_coord string “XYZ”. none

mode string “add” none

seeds table
Table of seed points; X, Y and Z are in their
respective tables within this table

none

x table Table of ‘X’ coordinates none

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 192

Table of ContentsIndex

Note: x, y and z coordinates are treated as real values (not truncated).

Note: r, t and z coordinates are treated as real values (not truncated).

Example:
seeding_input_table = {

seed_coord = "XYZ",
mode = "add",
seeds = {

x = {1.,2.0,3},
y = {4.5,5,6.25},
z = {7,8,9}

}
}

streamline_table = {
vector_func = "Velocity Vectors [PLOT3D]",
scalar_func = "Density (Q1)",

dataset = 1,
visibility = "on",

seeding = seeding_input_table,

y table Table of ‘Y’ coordinates none

z table Table of ‘Z’ coordinates none

seeding_input_table ; Format 6
This table is an input argument for streamline_table described above.
Field Data Type Comments Default
seed_coord string “RTZ”. none

mode string “add” none

seeds table
Table of seed points; R, T and Z are in their
respective tables within this table

none

r table Table of ‘R’ coordinates none

t table Table of ‘T’ coordinates none

z table Table of ‘Z’ coordinates none

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 193

Table of ContentsIndex

display_seeds = "on",

calculation_parameters = {
direction = "both",
step = 5,
time_limit = 20,
release_interval = 10,
duration = 3

}
}

rake_handle = create_streamline(streamline_table)

Notes:
• Individual seeds may be rejected, usually because the seed is outside the bounds of

the dataset. A seed could also be rejected if the maximum number of seeds is
already reached, or FieldView could not allocate memory to store the seed. Under
the "add" mode, these rejections will be silent. Therefore, the user is strongly urged
to query() after seeding to verify the list of seeds that were accepted.

• Modifying the seed_coord field will delete all existing seeds.
• FVX seeding is not incremental. The presence of the seeding field (subtable) in the

streamline_table for a rake will re-seed the rake, deleting any existing seeds.
• When seeding a surface, it will be an error if the specified surface is not appropriate

for the current seed_coord value.

set_streamlines_display (display_attributes)
This command allows choice of how to display the streamlines. In general, it works like
the DISPLAY TYPE option in the GUI. set_streamlines_display takes dis-
play_attributes table as an input and applies attributes specified in the table to all
rakes on all datasets in memory.

display_attributes
The table is an input argument for set_streamlines_display and
set_particle_paths_display.
Field Data Type Comments Default

display_type string

“complete”, “filament”, “filament_arrows”,
“filament_spheres”, “growing”, "dots"
“spheres_and_lines”, “spheres”, "polyspheres"+,
“lines_of_spheres”, “lines_of_dots”, “ribbons”*

**
“complete”

ribbon_width number
Used for “ribbons” display type. Positive integer
number less than or equal to 1024.

32

scale
sphere_scale (deprecated)

number
Sphere (or arrow) scale. Used for display types
using spheres or arrows. Positive floating point
number.

1.0

scalar_sizing
scalar_sphere_sizing (dep-
recated)

string
Used to control whether spheres (or arrows) will be
sized according to the current Scalar Function. “on”
or “off”.

“off”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 194

Table of ContentsIndex

* "ribbons" display_type is invalid for set_particle_paths_display()
** Default type is "spheres" for transient Particle Paths.
+ Type "polyspheres" applies only to Particle Paths. The only valid types for transient
 particle paths are "spheres", "polyspheres" and "dots".

Example:
display_attributes = {display_type="spheres"}
set_streamlines_display (display_attributes)

Notes:
• scale and scalar_sizing have an effect only if display_type is one of the

sphere (or arrow) types; no error is produced if either is specified with no effect.

• ribbon_width has an effect only if display_type is “ribbons”; no error is pro-
duced if specified with no effect.

• An error will be produced if set_streamlines_display() is called when no
rakes exist on any dataset in memory.

query_streamline_display()
This command returns the global display settings for streamline rake(s). This command
returns a display attributes table.

length_fraction number
Parameter used to control length of longest
streamline used in calculation of filament length.

0.9

animate string
This parameter specifies if the animated particle
paths move forward or backward in time. “up”,
“down”, “off”.

“off”

animate_divs number
The number of segments that the longest streamline
will be divided into. Used for “filament” display
type. Integer number between 1 and 1000.

25

particle_path_data
This table is an input argument for read_particle_paths command.
Field Data Type Comments Default
dataset number dataset number current

dataset
visibility string “on” or “off” “on”

geometric_color number or
string

“white”, “black”, or,
number ranging from 1 to 8

format string "fv particle path", "fv particle path direct",
"fvp", "fvp direct", "star-cd trk",
"star-cd 33", "fidap FDPART", "cfx-4 trk",
"xdb import"

none

filename string The name of the particle path file to be read.

scalar_colormap table See Scalar Colormap Specification n/a
show_legend string “on” or “off” see FVX Legends "off"

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 195

Table of ContentsIndex

Notes on the particle path file format
The format definition, "fvp", is synonymous with "fv particle path" and is provided as an
abbreviated form for user convenience.

Reading particle path data with FieldView running in Client-Server mode can become
confusing since the dataset can be read remotely while the particle path data can be
read either remotely or locally. If the dataset has been read locally (also known as using

scalar_func string Use this to specify the name of a flow-field scalar
function. Do not specify a value for ppath_func if
this is already specified.

'none'

ppath_func string Use this function to specify the name of a path
variable, or "Emission Time" or "Path Tag
Number". Do not specify a value for scalar_func if
this is already set.

'none'

scalar_range table table containing absolute, local and specified range
for either the scalar_or ppath function

max number or
string

Specified maximum value for the scalar or ppath
function
“*” sets max to the value of abs_max
(returned by query())

min number or
string

Specified minimum value for the scalar or ppath
function
“*” sets min to the value of abs_min
(returned by query())

local string "on" or "off", when specified "on", the local range
for the scalar ppath or function is used.

path_variables table Returned following a query
tags table Returned following a query
transparency number Range is from 0 to 1; level is rounded to nearest

value in 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75,
0.875, 1. Query returns above values.

0

select_by table Particle path thresholding methods

initial_value_variable string 'none' or the name of a ppath variable 'none'

initial_value_range table

max number or
string

Specified maximum for the initial value variable
“*” sets max to the value of abs_max
(returned by query())

min number or
string

Specified minimum for the initial value variable
“*” sets min to the value of abs_min
(returned by query())

value_on_path_variable string 'none' or the name of a ppath variable 'none'

value_on_path_range table

max number Specified maximum for the value on path variable
“*” sets max to the value of abs_max
(returned by query())

min number Specified minimum for the value on path variable
“*” sets min to the value of abs_min
(returned by query())

tags string or table 'none', 'all', a valid tag name or a table of valid tag
names

'none'

line_type string "thin", "medium", "thick" "thin"

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 196

Table of ContentsIndex

Direct Mode), the particle path data is expected to be read locally as well. So, if the data-
set was read using a Server, then by default, FieldView will read particle path data from
the same Server. In this case, using “fv particle path” or “fvp” will direct FieldView to
read the FV particle path data from that Server.

However, there is an additional option available if the dataset was read from a server.
You may also import an FV particle path file from the Client (also known as using local
mode). Only the FieldView particle path format files can be read in this way. To read
FieldView particle path data when the dataset has been read from a Server, use either
“fv particle path direct” or “fvp direct”.

FieldView currently allows only one particle path file per dataset. With this FVX com-
mand, each call to read_particle_paths() will silently replace the dataset's current
particle paths, if any.

Particle path subsetting provides powerful features to modify the visual content of the
data from any particle path file. The selection criteria based on either the ini-
tial_value_variable or the value_on_path_variable will only accept path vari-
able names. They are not able to accept "Emission Time" or "Path Tag Number". One or
more "Path Tag Number" can be used for subsetting using the 'Select by Tag' field on the
GUI. The equivalent subsetting features expressed in FVX would look similar to:

select_by = {
initial_value_variable = "Density (Q1)",
initial_value_range = {max = 1.1},
tags = {"Path-2", "Path-1"},

},

In some cases, particle path files may contain locations which lie outside the bounds of
the dataset. When scalar_func has been set to a flow-field scalar function, it is not
possible to obtain data for these points which lie outside the dataset volume. When this
happens, FieldView generates this warning:

WARNING
One or more points from the particle path data
lie outside the bounds of the dataset.

Normally, this warning is displayed in a popup. However, when running an FVX script,
the warning will simply be printed to console window.

Example:

local particle_paths_1 = read_particle_paths(
 {
 scalar_colormap = {
 name = "spectrum",
 invert = "off",

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 197

Table of ContentsIndex

 filled_contour = "off",
 }, -- scalar_colormap
 ppath_func = "Duration",
 format = "xdb import",
 number_of_contours = 16,
 geometric_color = 4,
 line_type = "thin",
 scalar_range = {
 min = 0,
 local_min = 0,
 max = 0.2000000029802322,
 local_max = 0.2000000029802322,
 use_local = "off",
 }, -- scalar_range
 select_by = {
 initial_value_variable = "none",
 value_on_path_variable = "none",
 tags = "none",
 }, -- select_by
 visibility = "on",
 scalar_func = "none",
 dataset = 1,
 filename = "/usr3/xdb/spitfire.xdb",
 }
) -- particle_paths_1

set_particle_paths_display(display_attributes)
This function is similar to the set_streamlines_display command; refer to the
display_attributes input table.

Example: Read in a STAR-CD .trk file, and set the display type to spheres.

my_ppath = read_particle_paths({
dataset = 2,
visibility = "on",
format = "star-cd trk",
filename = "testcase.trk",
ppath_func = "Diameter",

})

set_particle_paths_display({
display_type = "spheres",
sphere_scale = 0.25,
scalar_sizing = "on"

})

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 198

Table of ContentsIndex

Example: Use the select_by options to modify the display of a particle path file.

my_ppath = read_particle_paths({
dataset = 1,
visibility = "on",
format = "fidap FDPART",
filename = "bloodcell.FDPART",
ppath_func = "Diameter",

 })

The first step is to read the
particle path data.

 Figure 87 FVX Example: Working with particle path data

Use the select_by option to
select only larger particles.

modify (my_ppath, {
select_by = {

initial_value_variable =
"Diameter",
initial_value_range = { min = 2 },
 }

 })

 Figure 88 FVX Example: Select by particle diameter

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 199

Table of ContentsIndex

query_particle_paths_display()
This command will return the global display settings for particle path(s). This command
returns a display attributes table.

modify(handle, table)
This function is used to modify a previously created surface (boundary, computational,
iso or coordinate), rake or annotation. The input includes the handle for the object to be
modified and a table containing the modifications appropriate for the object. No explicit

Of the larger particles, select
only those that are recirculating.

modify (my_ppath, {
select_by = {

value_on_path_variable =
"wp_velocity",
value_on_path_range = { max = 0.0 },
 },

ppath_func = "TIME"
 })

 Figure 89 FVX Example: Select only recirculating trajectories

set_particle_paths_display({
display_type = "filament_spheres",
sphere_scale = 0.5,

 })

 Figure 90 FVX Example: Modify path display type

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 200

Table of ContentsIndex

output is provided. For the table argument for this command, please refer to tables for
the surface, rake or annotation object that you want to modify.

Example:
coord_table = {

dataset = 1,
scalar_func = "Pressure [PLOT3D]",
visibility = "on",
axis = "X",
X_axis = {

min = -6,
current = -1.1,
max = 8,

}
}

--create coordinate surface and assign handle to
--"coord_handle"
coord_handle = create_coord(coord_table)

modify(coord_handle,{scalar_func = "Density (Q1)"})

Note: It is not possible to modify the dataset for an existing object. It is also
not possible to modify the grid number for a computational surface. The data-
set number and grid number are fixed at the time of creation of the object.

delete(handle)
This function is used to delete a previously created surface, streamline or user defined
GUI (created with the make_panel command; see GUI Functions). The input is the
handle for the surface, streamline or panel to delete. No explicit output is provided and
the handle is invalid afterwards.

Example:
--the variable "b" holds the handle returned by the function
--create_boundary()
delete(b)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 201

Table of ContentsIndex

FVX Show Min Max Annotation
FVX support includes graphical markers and annotation for local Min and Max values for
a given scalar on Computational, Coordinate, Iso and/or Boundary surfaces, capturing
interactive and RESTART functionality from the Scalar Min/Max option on surface pan-
els. (see Scalar min/max Sub-panel in Working with FieldView Ch. 2, FieldView
Interface). Three fields, show_minmax_options and both min and max (tables), are
included in the input and query tables for Comp, Coord, Iso, and Boundary surfaces. The
FVX field show_minmax, analogous to the Show min/max check box on the Surface tab,
is off by default. When show_minmax_options is on, a points and annotation are dis-
played for the current Scalar Function, defined by the scalar_func field. If scalar_-
func is "none", an error will result (see Scalar Colormap Specification).

If the show_minmax alone is set "on", all other fields will default as shown. The graphi-
cal point marker and corresponding text are shown by default for both the minimum and
maximum scalar values. To turn either off, set show_location to "off", and text to
nil, respectively.

Also, for field text, numerical formatting as described in “Special Numerical Annotation
(Escape Sequences)” on page 229 are also allowed, eg. %%SCALAR_MINF12.6.

FVX_Show Min/Max

This table describes FVX support for location and annotation of scalar Min and Max values.
Field Data

Type
Comments Default

show_minmax_options string “on” or “off” “off”

font string

'leemono italic' , 'roman sans serif' , 'lee bold' ,
'leemono' , 'italics' , 'leese' , 'script' , 'roman' , 'noto
sans regular' , 'lee italic' , 'leemono bold italic' ,
'leese bold', 'noto' , 'lee bold italic' , 'lee' , 'leemono
bold'

"lee"

size number integer to select font size, range 1 to 100 25

min table
parameters to control display of min and max
locations for current scalar

show_location string “on” or “off” "on"

show_text table “on” or “off” "on"

color
number or
string

“white”, “black”, number ranging from 1 to 8 "black" or "white"

text string Strings and/or escape sequences "Min: %%SCALAR_FUNC =
%%SCALAR_MIN"

max table
parameters to control display of min and max
locations for current scalar

show_location string “on” or “off” "on"

show_text table “on” or “off” "on"

color
number or
string

“white”, “black”, number ranging from 1 to 8 "black" or "white"

text string Strings and/or escape sequences "Min: %%SCALAR_FUNC =
%%SCALAR_MIN"

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 202

Table of ContentsIndex

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 203

Table of ContentsIndex

FVX Legends
FVX support includes legends, capturing interactive and RESTART functionality from the
Legend tab on surface and rake visualization panels (see Legend Tab Controls in
Working with FieldView Ch. 2, FieldView Interface). Two fields, show_legend and
legend (a table), are included in the input and query tables for Comp, Coord, Iso,
Boundary, Streamlines and Particle Paths. The FVX field show_legend, analogous to
the Show Legend check box on the Legend tab, is off by default. When show_legend
is on, a legend is displayed for the current Scalar Function, defined by the scalar_-
func field. If scalar_func is "none", an error will result (see Scalar Colormap Spec-
ification).

FVX_Legends

This table describes FVX support for legends, applicable to create_coord, create_boundary,
create_comp, create_iso, create_streamline, read_particle_path.
Field Data

Type
Comments Default

show_legend string “on” or “off” “off”

legend table

type string “spectrum” or “contour” n/a

spectrum table parameters to control the spectrum display

border string “on” or “off” “off”

colorbar string “on” or “off” “on”

horizontal string “yes” or “no” “no”

num_labels number integer number corresponding to number of labels
in the legend, range is 2 to 52

2

contour table

labels_per_line string “single” or “multi”
contour subtable is ignored if type is “spectrum”

“single”

labels string “on” or “off” “on”

labels_parameters table

size number integer to select font size, range 1 to 100 10

coloring number or
string

“white”, “black”, number ranging from 1 to 8, or
scalar

decimal_places number integer to select number of significant digits in
legend labels, range is 0-6

3

numerical_format
string “floating_point”, “exponential” or “powers_of_ten”

(Note: “powers_of_ten” is a valid value only if Log
Scale is being used)

“floating_
point”

font

string 'leemono italic' , 'roman sans serif' , 'lee bold' ,
'leemono' , 'italics' , 'leese' , 'meteorology' , 'math
upper case' , 'script' , 'cyrillic' , 'roman' , 'helvetica' ,
'greek' , 'math lower case' , 'noto sans regular' , 'lee
italic' , 'leemono bold italic' , 'leese bold', 'noto' , 'lee
bold italic' , 'lee' , 'leemono bold'

“lee”

relative_position
table normalized display coordinates with X and Y

between -1 and 1 for upper left corner placement of
legend

0.85 for both

scale_height number real value used to specify vertical scaling of legend 1

scale_width
number real value used to specify horizontal scaling of

legend
1

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 204

Table of ContentsIndex

If the legend type is "spectrum" (default), a spectrum subtable determines whether a
colorbar is on (default) or off; whether a border is on or off (default); whether the legend
display is horizontal (default no); and the number of labels, num_labels (default 2, range
2-52). For legend type "contour", labels_per_line may be "single" (default) or "multi";
note that the display_type must be contour_lines, so contour legends are only
practical for surfaces and not rakes.

The legend position is controlled by the relative_position field, which is specified in
normalized display coordinates with X and Y between -1 and 1 (default 0.85 for both).
The normalized display coordinates are consistent with those used in RESTART files
(legend_xpos & legend_ypos). Note that this on screen position differs from Annotation
objects, which are defined in absolute pixel coordinates.

The scaling factors scale_width and scale_height scale the legend width and
height, respectively; both default to 1 to correspond to the legend size calculated by Fiel-
dView. Note that the legend size can also be changed interactively and is affected by
most legend attributes, except those related to color. Scaling conditions for legend type
spectrum are determined using the following rules:

• With colorbar on, scale_width and scale_height both apply;

annotation string “on” or “off” “on”

annotation_parameters table

position string “top”, “bottom”, “left”, “right” “top”

title table

size number integer to select font size, range 1 to 100 10

color
number or
string

“white”, “black”, or,
number ranging from 1 to 8

text string content for legend main title
%%SCALAR_
FUNC

font string

'leemono italic' , 'roman sans serif' , 'lee bold' ,
'leemono' , 'italics' , 'leese' , 'meteorology' , 'math
upper case' , 'script' , 'cyrillic' , 'roman' , 'helvetica' ,
'greek' , 'math lower case' , 'noto sans regular' , 'lee
italic' , 'leemono bold italic' , 'leese bold', 'noto' , 'lee
bold italic' , 'lee' , 'leemono bold'

“lee”

subtitle table

size number integer to select font size, range 1 to 100 8

color
number or
string

“white”, “black”, or number ranging from 1 to 8

text string content for legend sub-title %%CURRENT

font string

'leemono italic' , 'roman sans serif' , 'lee bold' ,
'leemono' , 'italics' , 'leese' , 'meteorology' , 'math
upper case' , 'script' , 'cyrillic' , 'roman' , 'helvetica' ,
'greek' , 'math lower case' , 'noto sans regular' , 'lee
italic' , 'leemono bold italic' , 'leese bold', 'noto' , 'lee
bold italic' , 'lee' , 'leemono bold'

“lee”

frame string “on” or “off” “off”

background string “on” or “off” “off”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 205

Table of ContentsIndex

• With colorbar off, the horizontal field determines scaling: if set to no,
scale_height applies and scale_width is ignored; if set to yes, scale_width
applies and scale_height is ignored.

For legend type contour, scale_height applies but scale_width is ignored.

If the labels field is on (default), a labels_parameters subtable determines whether
coloring is scalar, white (default), black or a number 1-8 (see Geometric Color and Sca-
lar Colormap Specification) and which font is used (see table above) as well as the
size (default 10, range 1-100), numerical_format (default floating_point; or
exponential) and number of decimal_places (default 3, range 0-6) of the numeri-
cal labels.

If the annotation field is on (default), an annotation_parameters subtable allows
specification of a title and/or subtitle. The annotation position may be set to the top
(default), left, right or bottom of the legend. Default text for title is %%SCALAR_-
FUNC. Default subtitle text is %%CURRENT for Comp, Coord and Iso. An empty string
can also be used to delete the title or subtitle from the legend. Default size for title is 10,
for subtitle is 8, range 1-100 for both. For title and subtitle, color may be white (default
when the background color is not white), black (default when the background color is
white) or a number 1-8 (see Geometric Color and Scalar Colormap Specification).

The frame surrounding the legend and the background behind it may be turned on or off
(default).

When a complete RESTART is saved interactively, the Guide FVX file will contain the full
syntax for any legends displayed with any of the supported visualization objects. An
example listing follows below:

create_coord(
{ show_legend = "on",

legend = {
type = "spectrum",

relative_position = {
0.85,
0.85,

}, -- relative_position

scale_height = 1,
scale_width = 1,

frame = "off",
background = "off",

spectrum = {

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 206

Table of ContentsIndex

border = "off",
colorbar = "on",
horizontal = "no",
num_labels = 2,

}, -- spectrum

labels = "on",
labels_parameters = {

size = 10,
coloring = "white",
decimal_places = 3,
numerical_format = "floating_point",
font = "lee",

}, -- labels_parameters

annotation = "on",
annotation_parameters = {

position = "top",
title = {

size = 10,
color = "white",
text = "%%SCALAR_FUNC",
font = "lee",

}, -- title
subtitle = {

size = 8,
color = "white",
text = "%%CURRENT",
font = "lee",

}, -- subtitle
}, -- annotation_parameters

}, -- legend

display_type = "constant_shading",
contours = "none",
scalar_range = {

min = 355.9788818359375,
max = 1907.152587890625,

 }, -- scalar_range
 dataset = 1,
 scalar_func = "temperature",
 axis = "X",
 show_mesh = "off",
 X_axis = {
 current = -0.01,

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 207

Table of ContentsIndex

 }, -- X_axis
 }
) -- coord_surfs[1]

FVX Support to Return Object Handles

Object handles bridge the gap between FVX and script commands, restarts and interac-
tive use of the FieldView GUI. In order for a surface, rake or annotation to be accessi-
ble, a handle for that object must be created. The FVX commands
get_current_object_handle and get_all_object_handles perform this task.

my_handle = get_current_object_handle()

This retrieves the handle of the current object on the current dataset.

If the current dataset has no current object, get_current_object_handle() returns
nil.

handles_table = get_all_object_handles(dataset_number)

where

handles_table = {
boundary_handles = {},
comp_handles = {},
coord_handles = {},
iso_handles = {},
streamline_handles = {},
particle_path_handles = {},
text_handles = {},
arrow_handles = {}

}

If dataset_number has no objects, get_all_object_handles() returns nil.

For each of the subtables, if there are no objects of that type on the dataset, the subtable
will not appear in the output table (ie, the subtable is nil).

Note that the table of handles returned is a "snapshot" of the state of FieldView at the
moment the command is executed.

For each non-nil subtable, indexing starts at 1.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 208

Table of ContentsIndex

Except for the comp_handles, text_handles, and arrow_handles subtables, the
index would also correspond to the "number" of the object on its panel in the GUI. For
example, handles.coord_handles[2] would be the FVX handle of the 2nd surface
on the dataset.

Computational Surface Handles

Since computational surfaces belong to grids on the dataset, the subtable, comp_han-
dles, will be a 2D table, indexed first by grid, and then by surface on the grid.

For example,

comp_handles[1] would be a table of handles of surfaces on Grid 1.

comp_handles[1][1] would be the handle of the 1st surface on Grid 1.

comp_handles[1][2] would be the handle of the 2nd surface on Grid 1.

comp_handles[2][1] would be the handle of the 1st surface on Grid 2.

etc.

If there are no surfaces on Grid n, comp_handles[n] will be nil.

Text and Arrow Handles

Although text and arrows are created in FVX with separate commands (see Creation
and Modification of Post-Processing Objects), they are created interactively by the
same visualization panel (Annotation) in the FieldView GUI.

Therefore, the indices into the text_handles and arrow_handles subtables are not
guaranteed to match the number of that object on the Annotation panel, where text and
arrows can be intermixed, according to the order in which they were created.

But, text_handles[n] would be the nth text object and arrow_handles[n] would
be the nth arrow object found on that panel.

Known Limitations and changes in behavior

In order to avoid having a nil handle returned, a surface should be current. If there is
no current surface, as would be the case for when a visualization panel is closed, then no
handle is returned.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 209

Table of ContentsIndex

Geometric Color and Scalar Colormap Specification
A field to specify geometric color (geometric_color) is available for input tables to the
creation commands outlined in Common input fields for surfaces, rakes & annota-
tion. The geometric color setting will be used when the scalar_func table entry is
either not set or set to "none". For Annotation objects, geometric_color is the only
coloring option.

The color specifications for “white” and “black” are the only colors which will be refer-
enced by their actual names. Since any of the other 8 colors can be changed using the
color mixer, numbers instead of names are assigned to reference them. These color
specification numbers are designed to map onto the current color mixer chip. The num-
bers ranging from 1 to 4 refer to the colors on the top row (excluding “white”), and the
numbers ranging from 5 to 8 refer to colors defined on the bottom row (excluding
“black”). The color “white” can be considered to be color number 0, but cannot be speci-
fied in this way. In the same respect, the color “black” can be considered to be color
number 9.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 210

Table of ContentsIndex

When a query is performed on a surface or rake, the field for the geometric color will be
returned, showing one of either the strings “white” or “black” or, a number ranging from 1
to 8.

Example: Create a geometric colored boundary surface.

boundary_surface1 = create_boundary({
types = {"body","wing"},
display_type = "smooth_shading",
geometric_color = "white"})

 Figure 91 Geometric Color Specification

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 211

Table of ContentsIndex

boundary_surface2 = create_boundary({
scalar_func = "none",
geometric_color = 8, -- 8 = red (default color)
threshold_func = "X",
threshold_range = {min = 2.4, max = 2.5},
types = {"tail"}

})

set_colortable(color_table_specification)
This function lets you customize the standard palette of 8 colors, following the same
interactive functionality provided with the color mixer.

color_table_specification
The table is an input argument for set_colortable command.
Field Data Type Comments Default
1 table

red number Valid range is from 0 to 255 0
green number Valid range is from 0 to 255 255
blue number Valid range is from 0 to 255 0
name string optional “green”

2 table
red number Valid range is from 0 to 255 0
green number Valid range is from 0 to 255 0
blue number Valid range is from 0 to 255 255
name string optional “blue”

3 table
red number Valid range is from 0 to 255 255
green number Valid range is from 0 to 255 0
blue number Valid range is from 0 to 255 255
name string optional “magenta”

4 table
red number Valid range is from 0 to 255 204
green number Valid range is from 0 to 255 204
blue number Valid range is from 0 to 255 204
name string optional “gray”

5 table
red number Valid range is from 0 to 255 255
green number Valid range is from 0 to 255 255
blue number Valid range is from 0 to 255 0
name string optional “yellow”

6 table
red number Valid range is from 0 to 255 0
green number Valid range is from 0 to 255 255
blue number Valid range is from 0 to 255 255
name string optional “cyan”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 212

Table of ContentsIndex

Just one or all of the colors can be re-specified to your custom settings. Note: Defini-
tions for all 8 colors must be supplied in order to change the color table with this com-
mand.

query_colortable(color_table_specification)
This function will return a table of 8 color specification tables, as defined above with the
previous command. The practical utility of this command is that it provides a simple way
to generate a full table which can then be modified and sent back to the set_colort-
able command described previously. Any changes made to the color palette, either
interactively, or by reading a COLOR RESTART prior to this query will be correctly
returned.

query_default_colortable()
This function will return the original 8 color settings in table form. The returned table can
then be passed to set_colortable() to restore the color palette to its original default
settings.

set_color(color_specification)
This function can be used to change a single color within the color palette. It differs from
the set_colortable command which is used to set ALL of the colors in the color pal-
ette.

get_default_color(color_number)

7 table
red number Valid range is from 0 to 255 127
green number Valid range is from 0 to 255 0
blue number Valid range is from 0 to 255 255
name string optional “purple”

8 table
red number Valid range is from 0 to 255 255
green number Valid range is from 0 to 255 0
blue number Valid range is from 0 to 255 0
name string optional “red”

color_specification
The table is an input argument for set_color command.
Field Data Type Comments Default
1..8 number number matches order in colortable

table color specification table
red number Valid range is from 0 to 255
green number Valid range is from 0 to 255
blue number Valid range is from 0 to 255
name string optional

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 213

Table of ContentsIndex

This function is used to obtain the original default color specification table for any one of
the 8 colors in the color palette. The color_number corresponds to an integer which
represents a single entry in the color table specification table.

Example:
Change the original entry for “green” in the default color palette to “brown” as illustrated
in the Color Mixer panel, shown previously.

brown = { red = 164, green = 129, blue = 0 }

-- Method 1
set_color (1, brown)

-- Method 2
geom_colors = query_colortable()
geom_colors[1] = brown
set_colortable(geom_colors)

-- Method 3
-- replace "green" chip with "brown"
geom_colors = query_colortable()
geom_colors[1] = {red=164, green=129, blue=0, name="brown"}
set_colortable(geom_colors)

Note that the FVX script would continue to specify this new color by the number 1, eg:
geometric_color = 1, and not by the name, “brown”.

Scalar Colormap Specification
If the scalar_func field is present, fields to specify colormap (scalar_colormap)
and range (scalar_range) will be present in the query table and available for input
tables to the creation commands outlined in Common input fields for surfaces, rakes
& annotation. Support for the “Local” check button on the Colormap GUI is also pro-
vided. This will let you automatically scale the colormap to the local range for the surface
or rake being created (or modified). Support for the “Log Scale” check button on the
Colormap GUI is also provided (see Log Scale for Colormaps in Working with Field-
View for information).

scalar_colormap = {
name = "spectrum" | "nasa-1" | "nasa-2" | "gray scale" |
"color striped" | "black & white" | "striped" | "zebra" |
"achromatic vision 1" | "achromatic vision 2" |
"banded blue to red dark" | "banded blue to red light" |
"banded grayscale" | "big difference" | "bio spectrum 1" |
"bio spectrum 2" | "bloodflow doppler" | "blue chrome" |
"camouflage" | "ccm blue red" | "ccm cool warm" |
"ccm high contrast" | "ccm spectrum" | "cd spectrum" |

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 214

Table of ContentsIndex

"cd striped" | "chrome" | "cold" | "dark radiation" |
"dark spectrum" | "dark green gradient" |
"flame transition" | "gold" | "high contrast" | "hot" |
"hot to cold diff" | "indigo flame" | "inferno" |
"leaf color" | "magma" | "plasma" | "radiation colors" |
"red to blue diff" | "red to purple diff" | "relief map" |
"relief map land" | "relief map ocean" | "simple flux" |
"small difference" | "spectrum diff gray" |
"spectrum diff white" | "steel blue" |
"teal black gradient" | "viridis"
-- a string that is the filename (including path) of a
-- colormap file.
[default: "spectrum"],
invert = "on" | "off" [default: "off"],
filled_contour = "on" | "off" [default: "off"],
log_scale = "on" | "off" [default: "off"]

}

If scalar_colormap.name does not match a defined colormap name, FieldView
assumes the string represents a filename, including path, of a colormap file.

The scalar range field for any surface or rake contains the following:

scalar_range = {

-- the global range for a given scalar function
abs_max = number,
abs_min = number,

-- the local range for a given scalar function
local_max = number,
local_min = number,

-- user specified range to control the colormap for a scalar
max = number,
min = number,

-- simple setting to toggle local scaling of the colormap
use_local = "on/off"

}

By setting the min and max fields within the scalar_range input table, you can directly
specify the range for the colormap. The use_local field setting can also have an
impact on the scaling of the colormap.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 215

Table of ContentsIndex

• If "use_local" is set to "on" and the min and/or max fields are also specified, then
the min and max fields will be used, overiding the "use_local" setting.

• If "use_local" is set to "on" and neither of the min or max fields are specified,
then the colormap scaling will be based on the local min/max range of the scalar
function. This is the same as turning the “local” button on.

• If "use_local" is set to "off", or is not present, and the min and/or max fields are
specified, then the min and max fields will be used to set the colormap range.

• Following a create or modify command, if "use_local" is not present in the sca-
lar_range input table, it is considered to be set to "off".

The min and max values in the scalar_range input table may be set to values that
exceed the bounds defined by abs_min and abs_max, under the condition that
"use_local" is set to "off", or is not present. Additionally, the min and max values
in the scalar_range input table may be set to values that exceed the bounds defined
by local_min and local_max, under the condition that "use_local" is set to "on".

Example: Create a theta coordinate surface, and modify the scalar range, temperature.

my_coord = create_coord({
dataset = 1,
axis = "T",
scalar_func = "temperature",
scalar_range = { min = -72, max = 1500 },
display_type = "smooth_shading"

})

-- override previous specification for scalar range
modify(my_coord, { scalar_range = { use_local = "on" } })

Example: Create a series of computational surfaces, with the local scalar range turned
on.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 216

Table of ContentsIndex

Example: Create a series of coordinate surfaces with scalar contours showing a range of
transparency values.

my_comps = {}

for i=1,8 do

my_comps[i] = create_comp({
grid = 1,
axis = "K",
K_axis = {

min = 1,
current = 1,
max = 2 },

J_axis = {
min = 1+(i-1)*8,
max = 1+i*8 },

scalar_func = "Y",
scalar_range =

{ use_local = "on"},
display_type = "constant_shading",

 })
end

 Figure 92 FVX Example: Controlling local scalar range

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 217

Table of ContentsIndex

xcolor_defines.fvx Utility
A utility for handling colors, xcolor_defines.fvx, is located on the FieldView DVD
in the fvx_and_restarts subdirectory. This utility contains a table with definitions
for all of the standard X Colors and is compatible with the set_color and set_col-
ortable FVX commands. There are also two FVX functions included in this utility:
set_Xcolor and match_colors. The former function can be used to modify an exist-
ing color definition with one of the X Colors. The latter function can be used to query the
X Color table and return a subset of the colors matching a selection criterion.

Example: Change the coordinate surfaces from the preceding example to be geometric
colored, using the first eight X colors that have the word ‘blue’ in their name. This exam-
ple will show how to use the xcolor_defines.fvx functions.

my_coords = {}

for i=1,8 do

my_coords[i] = create_coord({
axis = "Z",
Z_axis = { current = 1 },
scalar_func = "X",
contours = "scalar",
number_of_contours = 9,
line_type = "thick",
display_type = "smooth_shading",
transparency = (i-1)/8,
threshold_func = "Y",
threshold_range = {

min = (i-1)*8,
max = i*8

 }
 })
end

 Figure 93 FVX Example: Controlling local scalar range

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 218

Table of ContentsIndex

Vector Options
FVX support is included for curved and skip vector specifications. A field, vector_op-
tions, of type table, is included in the input and query tables for Comp, Coord, Iso and
Boundary surfaces. This field will always be allowed for create() and modify() but
will not be returned by query() if vector_func is "none".

vector_options

This is a subtable of comp_table, coord_table, iso_table and boundary_table.

Field Data Type Comments Default

shaft_type string
“straight” or “curved”
Only Coord surfaces can set shaft_type to

“curved”, otherwise it will be an error.
“straight”

head_type string “2D” or “3D” “2D”

head_scaling string “on” or “off” “off”

dofile("xcolor_defines.fvx")

just_blue = match_colors("blue")
my_colors = query_colortable()

for i = 1,8 do
my_colors[i] = just_blue[i]

end
set_colortable(my_colors)

my_color_names = {}

for i = 1,8 do
modify(my_coords[i],
{ geometric_color = i })

my_color_names[i] = create_text({
text = my_colors[i].name,
font = "helvetica",
size = 16,
position = { 60, 750 - 95*(i-1) },
geometric_color = "white",

 })
end

 Figure 94 FVX Example: Controlling local scalar range

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 219

Table of ContentsIndex

Annotation
create_text(text_description)

head_scaling_value
number float; range: greater than or equal to 0.0

head_scaling_value will be present in

query() table only if head_scaling is “on”

1.0

type

string “total”, “yz”, “xz”, “xy” or “projected”
The value “projected” is not allowed on Comp
surfaces; it will be ignored if specified, silently
reverting to its previous value.
The value “projected” is not allowed if
shaft_type is “curved”. If a Coord surface sets

type to “projected” when its current or input

shaft_type is “curved”, it will silently revert to

“total”.

“total”

skip string “on” or “off” “off”

skip_value

number float greater than or equal to 0.0; range: 0 to 1,
inclusive, rounded to nearest of: 0.0, 0.125, 0.250,
0.375, .5, .625, .75, .875, 1.
An input value of 0.0 is the same as setting skip
to “off”.
skip_value will be present in query() table

only if skip is “on”.

uniform_sampling

string “on” or “off”
Only Coord surfaces can set
uniform_sampling to “on”, otherwise it will

be an error.

“off”

number_of_samples

table For Coord surfaces, number_of_samples will

be present in the query() table only if

uniform_sampling is “on”.

For Comp, Iso & Boundary surfaces,
number_of_samples will be ignored on

create()/modify() and will not be present in

the query() table.

Fields x, y and z are expected for Cartesian;

r, t and z or x for non-Cartesian.
x or r number range 1-999, inclusive 10

y or t number range 1-999, inclusive 10

z or x number range 1-999, inclusive 10

vector_scale

number floating point number
Range: greater than 0.0 and less than or equal to
1e+10
NOTE: for shaft_type “straight”

1.0

time_limit

number floating point number
The default value for time_limit is calculated.

Range: greater than 0.0 and less than or equal to
1e+10
NOTE: for shaft_type “curved”

display_type
string “complete”, “filament” or “growing”

NOTE: for shaft_type “curved”
“complete”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 220

Table of ContentsIndex

This function lets you create a text string with control over its font, color, size and position
within the graphics window. FVX modify and query calls are supported for this data
structure.

Example: Create titles to show the solution time and time step for a transient dataset. In
this case, we’ll use the escape sequence to show the Solution Time and Time Step.

create_text({
text = "Soluton Time: %%T1",
font = "roman sans serif",
size = 10,
position = { 12, 625 },
geometric_color = "white"

})

create_text({
text = "Time Step: %%N1",
font = "roman sans serif",
size = 10,
position = { 300, 625 },
geometric_color = "white"

})

text_description
This table is an input argument for create_text command.
Field Data Type Comments Default
text string Specify the content of the text string

visibility string “on” or “off” “on”

geometric_color number or
string

“white”, “black”, or,
number ranging from 1 to 8

font string "lee", "lee bold", "lee italic", "lee bold italic",
"leemono", "leemono bold", "leemono italic",
"leemono bold italic", "leese", "leese bold", "noto",
"roman", "roman sans serif", "italics", "script",
"helvetica", "math lower case", "math upper case",
"greek", "cyrillic", "meteorology"

 "roman"

size number number ranging from 1 to 100 10

direction string "horizontal", "vertical" "horizontal"

position string "left", "center", "right", "top", "middle", "bottom"

table

number X position in pixels (0 is left side of window)

number Y position in pixels (0 is top of window)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 221

Table of ContentsIndex

A simple illustration of the legacy fonts available is shown in the following figure:

To consistently and more easily place text within the graphics window, please note the
following.

If the text is horizontal, the left side of the text rectangle passes through the X position.
The Y position specifies the baseline of the text. Note that descenders in letters such as
"g", "j", "p", "q", and "y" lie below the baseline. Therefore specifying a Y position of 0 for
a horizontal string means that only the descenders would be visible in the graphics win-
dow. Specifying a position="top" would work better in this case. Similarly, specify-
ing an X position equal to the maximum width of the window would result in the string
rendered off screen. Specifying a position="right" would work better in this case.

If the text is vertical, the Y position lies on the capline of the first character in the string.
The X position lies midway between the left and right sides of the text rectangle. There-
fore, specifying a Y position equal to the maximum height of the window would result in
the string rendered off screen. Specifying position="bottom" would work better in
this case. Similarly, specifying an X position equal to 0 or max screen width would result
in only half the string being visible. Specifying position="left" or posi-
tion="right" would work better.

 Figure 95 Legacy Font illustration

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 222

Table of ContentsIndex

An illustration of text layout using the various specifications is shown in the following fig-
ure:

create_arrow(arrow_description)
This function lets you create an arrow with control over its starting and end point, color,
size and position within the graphics window. Alternate specifications are available to
choose the arrow start point and its angle. The FVX modify and query calls are sup-
ported for this data structure.

arrow_description
This table is an input argument for create_arrow command.
Field Data Type Comments Default
visibility string “on” or “off” “on”

geometric_color number or
string

“white”, “black”, or,
number ranging from 1 to 8

from table

number X position in pixels (0 is left side of window)

center top

center bottom

txt = create_text({
text = 'center bottom',
position = 'center'})

modify(txt,{position = 'bottom'})

txt = create_text({
text = 'center top',
position = 'center'})

modify(txt,{position = 'top'})

txt = create_text({
text = 'left middle',
position = 'left'})

modify(txt,{position = 'middle'})

txt = create_text({
text = 'right middle',
position = 'right'})

modify(txt,{position = 'middle'})

left middle right middlecenter middle

txt = create_text({
text = 'center middle',
position = 'center'})

modify(txt,{position = 'middle'})

txt = create_text({
text = 'vertical',
direction = 'vertical',
position = 'left'})

modify(txt,{position = 'top'})

v
e
r
t
i
c
a
l

center top

center bottom

txt = create_text({
text = 'center bottom',
position = 'center'})

modify(txt,{position = 'bottom'})

txt = create_text({
text = 'center top',
position = 'center'})

modify(txt,{position = 'top'})

txt = create_text({
text = 'left middle',
position = 'left'})

modify(txt,{position = 'middle'})

txt = create_text({
text = 'right middle',
position = 'right'})

modify(txt,{position = 'middle'})

left middle right middlecenter middle

txt = create_text({
text = 'center middle',
position = 'center'})

modify(txt,{position = 'middle'})

txt = create_text({
text = 'vertical',
direction = 'vertical',
position = 'left'})

modify(txt,{position = 'top'})

v
e
r
t
i
c
a
l

 Figure 96 FVX Example: Text placement

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 223

Table of ContentsIndex

Example: Create a series of arrows of different colors, angles and lengths.

Quantify and Query
integrate_all(scalar_function [, dataset_number])
This function is used to integrate a current scalar function across all visible surfaces in
the entire dataset. The input is the scalar_function and the optional data-
set_number. If dataset_number is not provided, it defaults to the current dataset.
The output is the integration_result table.

number Y position in pixels (0 is top of window)
to table

number X position in pixels (0 is left side of window)

number Y position in pixels (0 is top of window)
angle number angle in degrees, 0 corresponds to a horizontal

orientation in the graphics window
length number length of arrow in pixels

width number width of arrow in pixels

integration_result
This table contains the data returned by the integration function.
Field Data Type Comments Default
integral_type string integral_type

arrow = {}

for i=1,19 do
arrow_color = mod(i,8)
if mod(i,8) == 0 then

arrow_color = 8
else

arrow_color = mod(i,8)
end

arrow[i] = create_arrow ({
geometric_color = arrow_color ,
angle = (i-1)*10,
length = 200 + (i-1)*8,
width = i,
from = { 400, 350 }

 })
end

 Figure 97 FVX Example: Drawing arrows

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 224

Table of ContentsIndex

Example:
scalar_function = "Temperature [PLOT3D]"
-– dataset no. not provided
result_a = integrate_all(scalar_function)
-– dataset no. is provided
result_b = integrate_all(scalar_function, 3)

integrate_surface(surface_handle)
This function is used to integrate the current scalar function across a previously defined
surface. The input is the handle for the surface to be integrated. The output is the
integration_result table. The scalar function should have been loaded in a prior
step, i.e., during surface creation or modification. Otherwise, the first function in the list
of scalar functions is automatically selected.

Example:
--define iso surface
iso_table = {

dataset = 4,
mode = "point_and_normal",
pt1 = {1,0,0},
pt2 = {1,1,0},
iso_value = {

min = -3,

scalar_function string scalar_name

area number area of the integral

sum number sum of scalar in area

average number sum divided by area

integration_result
This table contains the data returned by the integration function.
Field Data Type Comments Default
integral_type string integral_type

surface string surface_type

scalar_function string scalar_name

area number area of the integral

sum number sum of scalar in area

average number sum divided by area

has_surface_normals string "yes" or "no"

fields below exist if has_surface_normals = ”yes”

vector_function string "none" or name of function

sum_Nx number not present when integrating a coordinate surface

sum_Ny number not present when integrating a coordinate surface

sum_Nz number not present when integrating a coordinate surface

sum_V_dot_N number

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 225

Table of ContentsIndex

current = -1,
max = 0,

},
scalar_func = "Cp [PLOT3D]",
vector_func = "Velocity Vectors [PLOT3D]",
threshold_func = "Entropy [PLOT3D]",
threshold_range = {

min = -0.03,
max = 0.32,

},
visibility = "on",

}

--create iso surface
iso_handle = create_iso(iso_table)

--integrate scalar function over iso surface and put results
--in table result
result = integrate_surface(iso_handle)

integrate_partial_surface(surface_handle, point_table, selec-
tion_tolerance)
This command is used to integrate over a portion of a coordinate surface or iso-surface
when the surface consists of more than one piece. The integration is performed on the
connected portion of the surface that touches the point specified by point_table.
Adjacent polygons of a surface are considered connected if they share at least one
node, or have two nodes that are closer than selection_tolerance. The integration
results are returned in the form of an integration_result table.

selection_tolerance is a real number. Two pieces of the surface are assumed to
be connected to each other if they have nodes that are closer to each other than this
number.

See integrate_surface command above for detail on the integration_result
table.

Example:
point_table={1.1,2,3.}

point_table
This is a table with numbers at index values 1, 2 and 3.
Field Data Type Comments Default
[1] number ‘x’ coordinate

[2] number ‘y’ coordinate

[3] number ‘z’ coordinate

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 226

Table of ContentsIndex

integrate_partial_surface(iso_handle,point_table,1e-05)

Note: A selection_tolerance of zero will return a single polygon on what
appears to be a contiguous surface. It is recommended that the default value
of 1e-5 be used.

get_all_boundary_types(dataset_number or surface_handle)
This function is used to get a list of boundary types available for a given dataset. The
input is a one-based dataset_number or a surface_handle. A single argument is
required. The output is a table with all the boundary types available for the specified
dataset or the dataset of the surface.

Example:
output_table = get_all_boundary_types(<dataset|handle>)

get_scalar_functions(dataset_number)
Returns a table of (volume) scalar functions for the dataset whose number is the input
argument.

Example:
output_table = get_scalar_functions(dataset_no)

get_vector_functions(dataset_number)
Returns a table of (volume) vector functions for the dataset whose number is the input
argument.

Example:
output_table = get_vector_functions(dataset_no)

get_surface_scalar_functions(dataset_number)
Returns a table of surface-based scalar functions for the dataset whose number is the
input argument.

Example:
output_table = get_surface_scalar_functions(dataset_no)

get_surface_vector_functions(dataset_number)
Returns a table of surface-based vector functions for the dataset whose number is the
input argument.

Example:
output_table = get_surface_vector_functions(dataset_no)

match_one_entry(tbl, substr)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 227

Table of ContentsIndex

Match substr in table tbl and return the full string of the matching entry in tbl.
Returns a nil string and error message if no matches or more than one match. Matching
is case-insensitive with no regular expressions allowed. The value of err_str is nil
when there are no errors. Otherwise, it is assigned a text string consisting of the error
message. This function will operate on numerically indexed tables only, and not tables
indexed by other data types.

Syntax:
single_match = match_one_entry(tbl, substr)

match_multiple_entries(tb1, substr1 [, substr2...substrN])
Match one or more substrs in table tbl and return a table of the matching entries in
table. Returns a nil table and error message if no matches. Matching is case-insensitive
with no regular expressions allowed. The value of err_str is nil when there are no
errors. Otherwise, it is assigned a text string consisting of the error message. This func-
tion will operate on numerically indexed tables only, and not tables indexed by other data
types.

Syntax:
multi_match = {}
multi_match = match_multiple_entries(tb1,"substr1"[, "sub-

str2"..."substrN"])

query(handle)
This function is used to query for information on a previously created surface or stream-
line. The input is the handle for the surface or the streamline. The output is a table
whose content will depend on the type of the surface. Refer to Creation and Modifica-
tion of Post-Processing Objects for the table definition of each surface type.

Example:
handle = create_comp(comp_table)
–-returned table is assigned to out_table
out_table = query(handle)
-–debugging dump showing the contents of out_table
dumpall(out_table)

Thus, for surfaces query() returns values that would be in the input table. For stream-
lines,

query_table = query(rake_handle)

returns a table similar to the streamline_table.
In addition, query(rake_handle) returns the following fields:
• number_of_seeds
• duration – a table of real numbers. duration[i] is the duration (length) of the

streamline for seed i.
• duration_longest_path (on rake) – real number. Maximum of duration[i].

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 228

Table of ContentsIndex

These fields are read-only; if present in an input table to create_streamline() or
modify(), they will be ignored.

The seeding subtable of the query_table returned by the command will be of the
form:

query(rake_handle) will not return i, j, k seed subtables if the dataset is unstruc-
tured.

Example:
streamline = create_streamline(streamline_table)
–- returned table is assigned to query_table
query_table=query(streamline)
-– debugging dump showing the contents of query_table
dumpall(query_table)

The output from the FVX query command, for any surface or rake, will be modified to
include the local minimum and maximum range for the scalar, if it has been specified.
The returned local minimum and maximum values will be consistent with any threshold-
ing, subsetting and/or dynamic clipping which may have been applied (through FVX
commands) to the surface or rake in question.

query from streamline rakes
This seeding subtable of a table returned by query(rake_handle) command.
Field Data Type Comments Default
seed_coord string “IJK_int”, “IJK_real”, “XYZ”, “RTZ” none

mode string “add” none

seeds table Table of seed points. I, J and K; or X, Y, Z; or R, T,
Z are in their respective tables within this table.

none

i table Table of ‘I’ none

j table Table of ‘J’ none

k table Table of ‘K’ none

x, or r table Table of ‘X’, or ‘R’ coordinates none

y, or t table Table of ‘Y’, or ‘T’ coordinates none

z table Table of ‘Z’ coordinates none

 grid table Table of grid numbers. One grid number for each
seed.

Grid 1 in the
current dataset.

Updated Query Return for FVX Local Min and Max
This table contains the data returned by a normal query.
Field Data Type Comments Default
scalar_function string scalar_name

scalar_range table table containing absolute and local range for the
scalar_function

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 229

Table of ContentsIndex

probe_current_functions(point [, dataset_number])
This function is used to return the values of functions at a given point for a given dataset.
The input arguments are the table point and the optional dataset_number. If data-
set_number is not provided, it defaults to the current dataset. The output is the table
probe_cf_result. The coordinate system can be Cartesian or cylindrical.

abs_max number global maximum for the scalar function

abs_min number global minimum for the scalar function

max number specified maximum for the scalar function

min number specified minimum for the scalar function

use_local string "on" or "off", depending on use_local setting

local_max number local maximum for the scalar function

local_min number local minimum for the scalar function

point
This is a table with numbers at index values 1, 2 and 3.
Field Data Type Comments Default
[1] number ‘x’ or ‘r’ coordinate

[2] number ‘y’ or ‘theta’ coordinate

[3] number ‘z’ coordinate

point_cf_result
This table contains data that is returned by the function probe_current_functions().
Field Data Type Comments Default
point table table of numbers for point that is probed

region number region of point (only if regions are defined)

grid number number of the grid that the point belongs to

IJK table table of I, J and K values; only present if the grid is
of type ‘structured’

scalar table table with the scalar function’s information

func string name of the scalar function; nil if no function

value number value of the scalar function; nil if no function

iso table table with the iso function’s information

func string name of the iso function; nil if no function

value number value of the iso function; nil if no function

threshold table table with the threshold function’s information

func string name of the threshold function; nil if no function

value number value of the threshold function; nil if no function

vector table table with the vector function’s information

func string name of the vector function; nil if no function

value table table of x, y and z components of the vector
function; nil if no function

1 number value of vector component

2 number value of vector component

3 number value of vector component

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 230

Table of ContentsIndex

Example:
point = {10, 15, 32}
probe_current_functions(point) -- without specifying dataset
probe_current_functions(point, 3) -- with dataset specified

probe_IJK_current_functions(probe_IJK_input, grid_number [, data-
set_number])
This function is specific to structured grids. It returns a point given three fixed axis-value
pairs, or for a line of values, two fixed axis-value pairs and one range. The first input
argument is the table probe_IJK_input. The second input argument is the
grid_number. The optional third argument is the dataset_number. If data-
set_number is not provided, it defaults to the current dataset. The output is the table
probe_IJK_result.

probe_IJK_input
This table is the input argument for the function probe_IJK_current_functions().
Field Data Type Comments Default
I number or

table
min number If datatype of I is table, this field exists.

max number If datatype of I is a table, this field exists.

J number or
table

min number If datatype of J is table, this field exists.

max number If datatype of J is a table, this field exists.

K number or
table

min number If datatype of K is a table, this field exists.

max number If datatype of K is a table, this field exists.

probe_IJK_result
This table is returned by the function probe_IJK_current_functions().
Field Data Type Comments Default
n number number of results returned

[n] table table of values of the nth result

IJK table table of I, J and K values; only present if the grid is of type
‘structured’

 [1] number value of index I

 [2] number value of index J

 [3] number value of index K

point table table of x, y and z coordinates of point ‘n’

 [1] number value of x-coordinate of point ‘n’

 [2] number value of y-coordinate of point ‘n’

 [3] number value of z-coordinate of point ‘n’

grid number number of the grid that the point belongs to

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 231

Table of ContentsIndex

Example:
probe_IJK_input = {

I=10,
J=10,
K=14

}
-– call function with dataset no. specified
probe_IJK_result = probe_IJK_current_functions(probe_IJK_in-

put, 1, 2)

-- print scalar function name
-- Note: Although we have just one table, we still need to
-- specify its number, [1].
print(probe_IJK_result[1].scalar.func)

-- print scalar function value
print(probe_IJK_result[1].scalar.value)

Example:
probe_IJK_input = {

I = 10,
J = 10,
K = {

min=10,
max=14

}
}
-– function is called with dataset not specified. Also,
-- more points are returned since a range of K values is

region number region at point (only if regions are defined)

scalar table value of scalar at point ‘n’

func string name of the scalar function; nil if no function

value number value of the scalar function; nil if no function

iso table value of iso function at point ‘n’

func string name of the iso function; nil if no function

value number value of the iso function; nil if no function

threshold number value of threshold function at point ‘n’

func string name of the threshold function; nil if no function

value number value of the threshold function; nil if no function

 vector table table of vector function at point ‘n’

func string name of the vector function; nil if no function

value table table of vector function components

 [1] number value of the first component of the vector function

 [2] number value of the second component of the vector function

 [3] number value of the third component of the vector function

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 232

Table of ContentsIndex

-- provided as input
probe_IJK_result = probe_IJK_current_functions(probe_IJK_in-

put, 1)

–- dump all five tables (for K=10,11,12,13,14)
dumpall(probe_IJK_result)

-– print vector function name for the second table (for K=11)
print(probe_IJK_result[2].vector.func)

--print the value of third component of the vector function
--for the second table (for K=11)
print(probe_IJK_result[2].vector.value[3])

probe_IJK_current_scalar(probe_IJK_scalar_input, grid_number [,
dataset_number])
This function is similar to probe_IJK_current_functions(). Its performance is far
greater as it does not return region, iso, threshold and vector values.

probe_IJK_scalar_input
This table is the input argument for the function probe_IJK_current_scalar().
Field Data Type Comments Default
I number or

table
min number If datatype of I is table, this field exists.

max number If datatype of I is table, this field exists.

J number or
table

min number If datatype of J is table, this field exists.

max number If datatype of J is table, this field exists.

K number or
table

min number If datatype of K is table, this field exists.

max number If datatype of K is table, this field exists.

probe_IJK_scalar_result
This table is returned by the function probe_IJK_current_scalar().
Field Data Type Comments Default
n number number of results returned

[n] table table of values of the nth result

IJK table table of I, J and K values; only present if the grid is
of type ‘structured’

point table table of x, y and z coordinates of point ‘n’

grid number number of the grid that the point belongs to

scalar table table with scalar settings at point ‘n’

func string name of the scalar function; nil if no function

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 233

Table of ContentsIndex

Surface to Surface Sampling for Dataset Comparison
Surface Sampling allows sampling of a results target surface using all of the nodes of a
grid target surface. This is many times faster than Dataset Sampling for looking at com-
parisons on one surface with fewer restrictions (see Dataset Sampling in Working with
FieldView).

Surface Sampling is done with an FVX command using FVX surface handles for the grid
and results surfaces. FVX surface handles are returned by all FVX surface creation
commands, and can be fetched for surfaces created outside of FVX by using the FVX
get_current_object_handle command.

Surface Sampling creates an FV-UNS dataset made of the geometry of the grid target
surface, stored as a boundary, and containing results from the grid target (variables are
tagged with "G:") and also from the results target (tagged with "R:").

The "R:" and "G:" variables can then be compared using differences or ratios by creating
a user-defined formula.

All solver variables from the grid target dataset and the results target dataset are output
(with a few exceptions noted below under Limitations). If a user is interested in compar-
ing fewer variables, lists of variables to be sampled from the results target and written
from the grid target can be specified optionally to reduce compute and I/O time.

The FV-UNS files are created by the FieldView client, even if the datasets are on serv-
ers. The FV-UNS files can be read in “direct” mode, or by any server that can see the file
location. Some versions of FieldView require that you use the Data Input option "Sur-
face Sampled Data". This input option is also available for FVX with the option "sur-
face_sampled_data", as described for the function read_dataset() in this chapter.

value number value of the scalar function; nil if no function

 Figure 98 Surface to Surface Sampling for Dataset Comparison

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 234

Table of ContentsIndex

The original grid target dataset and results target dataset do not need to be present when
you read these FV-UNS file outputs, making it very quick to load the sampling results for
comparison.

The FV-UNS files have one grid, so using a parallel server to read them will not be any
faster.

There are no restrictions on the datasets. Datasets can be a volume dataset or an XDB
file or a boundary-only dataset, in any combination. One dataset can be client-server
and the other can be "direct". One dataset can be from a server, and the other from a dif-
ferent server, or a parallel server.

The two surfaces must be in different datasets.

It is not necessary that either surface belongs to the current dataset. The current dataset
and current surface is unchanged by surface sampling.

The two surfaces do not have to be the same type of surface. The intent is that the two
surfaces have the same (or at least overlapping) geometry, but that is up to the user.

If the grid target surface is a boundary surface, the FV-UNS boundary types will match
the grid target. For other types of grid target surfaces, the FV-UNS file will have a single
boundary type whose name gives basic information about the grid target surface, such
as "Coord Surf: R = 2.5" for an R = 2.5 cylindrical coordinate surface.

The preprocessing used for Surface Sampling has been decorrelated from the overall
Grid Processing performed on the entire dataset. The recommended option for perform-
ing Surface Sampling is to set Grid Processing to "Less" at read time, which will save
both time and memory.

FVX Syntax
sampling_output_table = surface_sampling(surface_sampling_table)

Input table surface_sampling_table:

surface_grid_target = FVX handle of grid target surface (required)
surface_results_target = FVX handle of results target surface (required)
surface_file = name (path) of combined grid & results or split grid-only FV-

UNS
surface_results_file = name (path) of split results-only FV-UNS
surface_grid_variables = list of variables to be written from the grid target
surface_results_variables = list of variables to be sampled from the

results target

At least one of the two file names must be specified.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 235

Table of ContentsIndex

If only "surface_file" is specified, a combined (grid and results) FV-UNS file is cre-
ated.

If both "surface_file" and "surface_results_file" are specified, then
surface_file is an FV-UNS grid-only file, and surface_results_file is an FV-
UNS results-only file.

If only "surface_results_file" is specified, then an FV-UNS results-only file is
created, but not a grid-only file. You must generate a grid-only file at least once in order
to use this results-only file. This is intended for cases where the same grid target surface
is being used for comparison with multiple results target surfaces and the same grid-only
output file can be reused.

The vertices of the grid target surface are used to sample (probe) the results target sur-
face.

If a vertex from the grid surface lies on the results surface, then the sampling probe for
that point will succeed, and FieldView will return scalar and vector values from the
results surface for that point.

If a vertex from the grid surface does not lie on the results surface, then the sampling
probe for that point will fail, and FieldView will return non-finite values (magenta) for all
scalars and vectors at that point.

Output table (sampling_output_table):

matched_vertices = number of grid surface vertices that were
located inside the results surface

unmatched_vertices = number of grid surface vertices that were
 not located inside the results surface

If a serious error occurred, the output table is nil and no FV-UNS files are created. An
error message should be displayed as a pop-up or in the console.

Note: You can sample multiple surfaces at once by writing them into an XDB
file. For example, you can write an XDB file containing a coordinate surface
sweep with 25 sweep steps. The 25 sweep steps appear as 25 boundary
types in the XDB file. Create a boundary surface containing all 25 sweep
steps, and use this surface as the grid target surface. Surface sampling will
produce an FV-UNS file with the same 25 boundary types. You can then look
at the sampling results for the individual sweep steps (one boundary type at a
time), or all at once.

Example:
-- Select the grid surface target
fv_script("SELECT DATASET 1")

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 236

Table of ContentsIndex

fv_script("SELECT BOUNDARY 1")
surface_1 = get_current_object_handle()
-- Select the results surface target
fv_script("SELECT DATASET 2")
fv_script("SELECT BOUNDARY 1")
surface_2 = get_current_object_handle()

surface_sampling({
surface_grid_target = surface_1,
surface_results_target = surface_2,
surface_file = "surface_sample.uns"

 })

Limitations
Computational surfaces and structured boundary surfaces are not supported.

Dynamic clipping of either surface is not supported.

Face-based boundary variables are not supported.

PLOT3D/OVERFLOW-2 Q variables are not supported. PLOT3D and OVERFLOW-2
quantities derived from these are not supported.

Formulas and user-defined toolkit functions are not supported.

Note: All limitations above with the exception of face-based boundary
[BNDRY] variables can be overcome by exporting surfaces and variables to
XDB format and importing them back into FieldView prior to performing Sur-
face Sampling.

Normals-based surface integrals are not supported on the resulting sampling output FV-
UNS.

Grid target surface polygons with more than 256 vertices are skipped with a console
warning.

Transient Data Handling
set_transient(transient_table [, dataset_number])
Causes FieldView to move to the specified time step or solution time on dataset_num-
ber or the current dataset if dataset_number is not provided. The input argument
transient_table specifies the time step or solution time. There is no explicit output.
The function returns an error if the dataset is not transient.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 237

Table of ContentsIndex

Example:
transient_table = {

time_step = num,
}
set_transient(transient_table)

query_transient([transient_step], [dataset_number])
This returns a transient_table for a transient step. It returns a table described
below for the current transient step if no argument is specified or a specific step when
specified as input. The optional second argument is the dataset_number. If data-
set_number is not provided, it defaults to the current dataset.

Example:
--set the transient for transient step "a"
set_transient(a)
--retrieve the values of the current transient, i.e., "a"
query_transient()
--retrieve the values of transient step "b"
query_transient(b)

transient_table
This table represents the information on a specific transient step. Transient steps do not have
handles since they may not be deleted, only selected. Handles are not necessary since they have
inherent identifiers, i.e., time_step or solution_time values.
Field Data Type Comments Default
time_step or solution_time number Only one of these fields should be specified. If

both fields are provided, time_step overrides
solution_time

transient_table
This table represents output from query_transient function.
Field Data Type Comments Default
time_step number Current time step. n/a

solution_time number Current solution time. n/a

total_time_steps number
Total number of time steps in the current dataset.
Read Only.

n/a

time_step_range table Read Only. n/a

min number Minimal time step number. n/a

max number Maximal time step number. n/a

 values table
Table of time step numbers.
It has total_time_steps entries.

n/a

solution_time_range table Read Only. n/a

min number Minimal solution time in the dataset. n/a

max number Maximal solution time in the dataset. n/a

 values table
Table of solution time step values.
It has total_time_steps entries.

n/a

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 238

Table of ContentsIndex

sweep_time (input_table [, dataset_number])
The command performs sweeping in time for transient data. If dataset_number is not
provided, it defaults to the current dataset.

NOTE: The below input_table provides for use of either ’step’ or ’solution time’, but
only one format can be used. For example, a table containing both a from_time_step
field and a to_solution_time field will produce an error.

* In general, in FVX, if a real number is supplied for a field that requires an integer num-
ber it will be truncated to integer. For example, if loop=1.9, it will be transformed to
loop=1. However, from_time_step and to_time_step must be integers. For
example, from_time_step=1.9 will be rejected.

** The Working with FieldView section Function Selection for XDB Export describes
the location and use of files xdb_vars and root.xfn which are required to specify the
functions to be stored in your XDB extract when using extracts_database_name.

input_table; Format 1
This table is an input table for sweep_time command.
Field Data Type Comments Default
from_time_step number* ‘first’, or an integer number. Required field n/a

to_time_step *(see note) number* ‘last’, or an integer number. Required field n/a

from_solution_time number Real number. Required field n/a

to_solution_time number Real number. Required field n/a

loop number* Positive integer number. 1

skip number*
Positive integer number. skip=1 means no skip,

skip=2 means skip every other step, etc.
1

cycles number* Positive integer number. 1

delta_time number

Positive real number. If specified, it will override
any solution times for the dataset (to recover the
original solution times, reissue the sweep_time
command without a delta_time field).

none

streaklines_filename string

If this field is not present and if the transient sweep produces
streaklines, they will be exported to a file in the current
directory with the default name:
streak<loginname_date_H_M_S>.fvp
For example: streakuser_12Jun99_12_14_29.fvp

extracts_database_name
 **(see note)

string

If provided, the transient sweep will export an XDB
database. Note: no streaklines are exported when this field
is present.

export_surfaces table
A table of tables, each specifying the export of a specific
surface; see below (following Format 2) for details.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 239

Table of ContentsIndex

Subtable for transient export of visualization objects:

export_surfaces

This is a subtable of the input_table to the sweep_time command.
In FieldView 17, only the first surface subtable will be used and any others will be ignored.

Field Data Type Comments Default

surface table
<handle of a surface>
In FieldView 17, the handle must be that of a
Coordinate or unstructured Boundary surface.

basename string

type string “text”, “csv” or “mat-file” “text”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 240

Table of ContentsIndex

Graphing
graph(graph_input)
This function is used to create a 2D plot based on input criteria and an existing dataset.
The input argument is the table graph_input. The output is a handle to a 2D plot
which is displayed. The graph command is currently not supported on the MAC.

graph_input
This table is used as the input argument to the graph function. The fields in this table specify
the parameters of the graph to be drawn.
Field Data Type Comments Default
title string Example: “Graph Title”

grid table grid_table = {}. When this empty table is

present, the graph background will have a grid on it.
background string color_spec - a string with the name of a known

color or the hexadecimal value of the color, i.e.,
“#rrggbb” where “rr”, “gg” and “bb” are
hexadecimal representations of red, green and blue
respectively.

plotbackground string see color_spec above

line table table with one or more entries of line_table

bar table table with one or more entries of bar_table

x_axis table table with one axis_table entry for the x-axis

y_axis table table with one axis_table entry for the left y-

axis
y2_axis table table with one axis_table entry for the right y-

axis

line_table
This table is used to represent properties of a line that will be drawn on a 2D plot. It is a field
within a table which is in the graph_input table.
Field Data Type Comments Default
title string title for the line (optional). “lineN”

xdata table A table with numerical indices and corresponding
number values (required).

ydata table A table with numerical indices and corresponding
number values (required).

option table line_option_table

line_option_table
This table is used to represent properties of a line that will be drawn on a 2D plot. It is a field
within the table line_table.
Field Data Type Comments Default

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 241

Table of ContentsIndex

color string This field is used to specify the color of the line as
color_spec - a string with the name of a known

color or the hexadecimal value of the color, i.e.,
“#rrggbb” where “rr”, “gg” and “bb” are
hexadecimal representations of red, green and blue
respectively.

pixels string This field refers to the size of the markers in “N”-
no. of pixels or “Nc” - distance in centimeters or
“Ni” - distance in inches or “Nm” - distance in
millimeters or “Np” - distance in printer points.
Note: In all previous options, replace “N” with the
numerical value.

fill string This field is used to specify the fill color of the
markers; see color_spec above.

symbol string “square” or “circle” or “diamond” or “plus” or
“cross” or “splus” or “scross” or “triangle”

mapy string this specifies which y axis to use, i.e., “y” or “y2”.
“y” is on the left side while “y2” is on the right side.

smooth string smoothing for drawing line "linear" | "step" |
"natural" | "quadratic"

"linear"

bar_table
This table is used to represent properties of a line that will be drawn on a bar chart. It is a field
within a table which is in the graph_input table.
Field Data Type Comments Default
title string title for the line (optional) “barN”

xdata table A table with numerical indices and corresponding
number values (required).

ydata table A table with numerical indices and corresponding
number values (required).

option table bar_option_table.

bar_option_table
This table is used to represent properties of a bar that will be drawn on a 2D plot. It is a field
within the table bar_table.
Field Data Type Comments Default
barwidth number specifies the width of the bars in units along the X

axis.
foreground string color_spec - a string with the name of a known

color or the hexadecimal value of the color, i.e.,
“#rrggbb” where “rr”, “gg” and “bb” are
hexadecimal representations of red, green and blue
respectively.

background string see color_spec above

mapy string this specifies which y axis to use, i.e., “y” or “y2”.
“y” is on the left side while “y2” is on the right side.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 242

Table of ContentsIndex

Example:
position = {1,2,3,4,5}
pressure = {1,5,6,2,.5}

graph_table = {
title = "Axial Variation of Pressure",
grid = {},
background = "white",
plotbackground = "gray",

line = {
{

title = "Pressure",
xdata = position, --table of x-axis positions
--table of corresponding y-axis positions
ydata = pressure,
option = {

fill = "red",
symbol = "diamond"

},
},
},

x_axis = {
title = "Axial Position",
titlecolor = "black"

},

y_axis = {
title = "Pressure",
titlecolor = "black"

}
}

axis_table
This table is used to represent properties of an axis that will be drawn on a 2D plot. It is a field
within a table which is in the graph_input table.
Field Data Type Comments Default
title string Axis title

titlecolor string color_spec - a string with the name of a known

color or the hexadecimal value of the color, i.e.,
“#rrggbb” where “rr”, “gg” and “bb” are
hexadecimal representations of red, green and blue
respectively.

logscale string turn “on” or turn “off” logarithmic scaling of axis “off”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 243

Table of ContentsIndex

graph_handle = graph(graph_table) -- create 2D plot

postscript_output(graph_handle, output_file_name, postscript_out-
put_options_table)
This function allows a graph to be saved as a postscript file. The input arguments to this
function are the following: the variable holding the handle for the graph, the name of the
output file and the table that specifies the postscript output options.

Example:
graph_handle = graph(graph_table)

--set output specifications
postscript_output_options_table = {

colormode = "gray",
landscape="off",
maxpect="off",
width="6i", --set width to six inches
height="8i" –-set height to eight inches

}

--set output file name
outfile = "graph.ps"

postscript_output_options_table
This table will be used by the function postscript_output() for specifying postscript
options.
Field Data Type Comments Default
center string “on” or “off”. Centers graph on page. “on”

colormode string “color” or “gray” or “mono” “color”

decorations string “on” or “off”. Option to draw background and
border. Note: set to “off” to force white
background for printing.

“on”

landscape string “on” or “off”. If “off” is selected, the output is in
“portrait” orientation.

“off”

maxpect string “on” or “off”. If “on”, the graph will scale to the
largest size that will fit on the page while
maintaining aspect ratio.

“off”

width string “N”- no. of pixels or “Nc” - distance in
centimeters or “Ni” - distance in inches or “Nm” -
distance in millimeters or “Np” - distance in
printer points. Note: In all previous options,
replace “N” with the numerical value.

size on screen

height string “N”- no. of pixels or “Nc” - distance in
centimeters or “Ni” - distance in inches or “Nm” -
distance in millimeters or “Np” - distance in
printer points. Note: In all previous options,
replace “N” with the numerical value.

size on screen

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 244

Table of ContentsIndex

--output postscript file
postscript_output(graph_handle,outfile, postscript_out-

put_options_table)

GUI Functions
make_panel(make_panel_input)
This function allows users to create their own panels. It takes as its input argument a
table describing the widgets that the user wishes to create. The user may add an arbi-
trary number of widgets. Each widget may be used zero or more times. This function
returns the handle to the panel object. Widgets within this panel are assigned numbers
starting from one, in the order that they are specified in the input table. This allows spe-
cific access to the widget since the returned handle is a table with number indices. The
make_panel function calls set_preserve_globals(1) to preserve global vari-
ables since panels can be used after a script completes. The make_panel command
is currently not supported on the MAC.

make_panel_input
This table will hold the information needed by the make_panel() function to create the
panels as desired by the user.
Field Data Type Comments Default
title string panel title

xloc number horizontal location of the top left corner of the panel
in pixels

yloc number vertical location of the top left corner of the panel in
pixels

width number width of the panel in pixels

height number height of the panel in pixels

text widget spec table table zero or more entries of table

type string “text” - an area that accepts text input

title string title for the panel

action function function definition or variable pointing to function

button widget spec table table zero or more entries of table

type string “button” - a labeled button which may be pressed

title string title for the slider

action function function definition or variable point to function

slider widget spec table table zero or more entries of table

type string “slider” - a slider whose value may be set by slider
or type-in entry. The ‘min’ and ‘max’ values of the
sliders are displayed as read-only entries.

title string title for the panel

action function function definition or variable point to function -
called when the user stops dragging the slider

drag_action function function definition or variable point to function -
called while the user drags the slider

value table The initial value for the slider

abs_min number

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 245

Table of ContentsIndex

self:set()
This function can be used in the action fields of the input table for the make_panel()
function. It sets the input argument as the value of the widget where this function is
used.

self:get()
This function can be used in the action fields of the input table for the make_panel()
function. It gets the value of the relevant field in the widget where this function is used.

Example:
--define functions to be used with panel
function button_test()

print ("Result of button test.")
end

function slider_test(new_pos)
print ("Current slider is ",new_pos)

end

--set panel specifications
make_panel_input = {

title = "demo panel",
xloc=700,yloc=100 ;

{ --button widget
type = "button",
title = "Button Test",
action = function()
button_test()
end

},

{ --text widget
type = "text",
title = "Enter text followed by carriage return:",
action = function(self)
print("text is "..self:get())
end

current number

abs_max number

digits number An integer specifying how many significant digits
should be retained when displaying the slider value.
If the number is less than or equal to zero, then the
scale picks the smallest value that guarantees that
every possible slider position prints as a different
string.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 246

Table of ContentsIndex

},

{ --slider widget
type = "slider",
title = "Slider Value:",
value = {

abs_min = 1,
current = 50,
abs_max = 100,

},
drag_action = function(self)

slider_test(self:get().current)
end,
action = function(self)

slider_test(self:get().current)
end

}
}

--create panel
panel_handle = make_panel(make_panel_input)

Other Functions
fv_script()
This function is used to execute FieldView script commands that are provided as text
input. The input consists of one string representing FieldView script. There is no explicit
output. See Chapter 5 in this Reference Manual for full documentation on FieldView
Script Language Commands.

Example:
-–execute the specified restart file
fv_script("RESTART BOUNDARY aerospace.bnd")

redraw()
This function is used to refresh the FieldView screen when changes are made to sur-
faces. There is no input provided. There is no explicit output. This function is not oper-
ational while FieldView is in batch mode.

Example:
redraw()

set_auto_redraw([arg])
If the argument is not set, or is nil, then graphics updates will not occur unless the FVX
script encounters a redraw() command (above). If set_auto_redraw([arg]) is
set with a non-nil argument, the default behavior will be restored, where FieldView

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 247

Table of ContentsIndex

updates graphics normally. This function is useful to control what images are captured
with the command fv_script("record on").

Example:
set_auto_redraw() -–turns off auto redraw

set_preserve_globals([arg])
If the input argument is non-nil, global variables are preserved across script invocations.
The default behavior is to not preserve global variables. However if the function
make_panel() is used, it calls set_preserve_globals(1). This is needed since
panels can be used after a FieldView script completes.

Example:
set_preserve_globals() –-turns off global preservation

dump(variable)
This function accepts a variable as input and outputs detailed information on the variable
such as its value and type. In the case of functions and complex tables (i.e., with tables
and functions as fields), value does not apply and the variable’s memory address in
hexadecimal format is output instead.

Example:
a = "hello"
b = "2"
c = { {a=1},{"hello"} }
function d() print("temp") end
dump(a) -–outputs: string hello
dump(b) -–outputs: number 2
dump(c) -–outputs: 1 table table: 046CEAD0

2 table table: 046CEAB0
dump(d) -–outputs: function function: 046CF2F0

dumpall(variable)
This function is similar to the dump command but outputs more detailed information on
the input variable by fully expanding tables.

The following example compares output from the two commands following a query.

coord_table = query(my_surface)

dump(coord_table)

table: 0FF822F0
threshold_range table table: 0FE50D18
display_type string constant_shading
scalar_func string Density (Q1)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 248

Table of ContentsIndex

X_axis table table: 0FE50E38
axis string X
Z_axis table table: 0FE50E10
visibility string on
Y_axis table table: 0FE50D40

threshold_func string (Y2+Z2)^.5
dataset number 1
vector_func string none

dumpall(coord_table)

table: 13AB4320
threshold_range table table: 0FE50D18

abs_max number 6.021609783172607
max number 0.6000000238418579
abs_min number 0
min number 0

display_type string constant_shading
scalar_func string Density (Q1)
X_axis table table: 0FE50E38

abs_max number 7.829783916473389
current number 0.9049365520477295
max number 7.829783916473389
abs_min number -6.01991081237793
min number -6.01991081237793

axis string X
Z_axis table table: 0FE50E10

abs_max number 6.019911289215088
max number 6.019911289215088
abs_min number -3.059648224734701e-005
min number -3.059648224734701e-005

visibility string on
Y_axis table table: 0FE50D40

abs_max number 6.019956111907959
max number 6.019956111907959
abs_min number -6.019910335540772
min number -6.019910335540772

threshold_func string (Y2+Z2)^.5
dataset number 1
vector_func string none

stop()
This function allows for an FVX program to be paused during execution. Its usefulness is
for the purpose of debugging code. This function stops the program at the line where it is
called, then brings up the debugger prompt in the terminal window from which FieldView

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 249

Table of ContentsIndex

was executed (Linux) or the console window (Windows). This function is called without
any input arguments. See also FVX Debugger commands stop at [line] and
stop in [function].

Dynamic Clipping
A dynamic clip group can be created by specifying a series of clip definitions:

dynamic_clip_table={
dataset = 1,
name = "clipping_line",
clip_definitions = {

{ point = {3.27324, 5.43, 4.6723 },
normal = {3.27324, 18.105, 22.874 }

},
{ point = {3.27324, 4.1625, 2.85213 },

normal = {3.27324, 2.8950, 1.03196 }
},

}, -- end of definitions
active = "on|off",

}
create_dynamic_clip(dynamic_clip_table)

FieldView automatically checks for active FVX-defined dynamic clips and GUI-defined
dynamic clips. If an FVX defined dynamic clip is turned ON, then ALL the other FVX-
and GUI-defined dynamic clips are turned off. Similar to other surfaces, the user can
create, delete, modify, and query the create_dynamic_clip function via the
handle. These FVX commands can only be applied to FVX-created dynamic clips, and
not to GUI-created dynamic clips. The dynamically created GUI must also be main-
tained. For more information on Dynamic Clipping, see Chapter 14.

dynamic_clip_table
Field Data Type Comments Default
dataset number dataset number current

name string must have a name (explicit definition required)

clip_definitions table table with one or more entries of
clip_definition_table

active string “on” or “off” “off”

clip_definition_table
Field Data Type Comments Default
point table {point1, point2, point3}

normal table {point1, point2, point3} ordered as X, Y, Z in
dataset space

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 250

Table of ContentsIndex

FVX View Controls
set_view
An FVX utility is provided on the FieldView DVD (see /fvx_and_restarts/
set_view.fvx) to allow for manipulation of the view parameters which will permit user
defined orientation of a given dataset. This utility creates a temporary View Transform
restart file (*.vct) and then applies the restart to the current dataset. To illustrate its
use, a simple example program is also provided (see /fvx_and_restarts/
set_view_TEST.fvx).

set_view(set_view_table)
Sets view properties for datasets in FieldView. The input is the set_view_table.
Note: This utility requires a dataset to have been read in by the read_dataset() FVX
function.

set_view_table
This table of fields represents FieldView’s view settings.
Field Data Type Comments Default*

dataset_info_table table Output table handle of function
read_dataset()

Zoom number 1
angle_axis table

at table
X, Y, Z point coordinate of “look at”
view point

from table
X, Y, Z point coordinate of “look
from” view point

up table Vector designating upward direction {0, 1, 0}
translation table

x number
y number
z number

outline string “on” or “off” “on”
perspective** table

angle number Measured in degrees 40
z number Value depends on scaling of dataset -2.75

axis_marker string “on” or “off” “on”
mouse_mode string “track” or “running” “track”

light_direction table
Table of X, Y, and Z vector
components

x_light number 0.577350
y_light number 0.577350
z_light number 0.577350

rotation_center** table
Table of X, Y, and Z vector
components

x_rot number 0
y_rot number 0

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 251

Table of ContentsIndex

*Default settings for these fields are applied if and only if there are no previous field set-
tings detected.

**Excluding these fields completely from the input table will set their toggle status to “off”
(field equals nil); setting these fields equal to an empty table {} initiates the default
options.

FVX Debugger
The FVX debugger enables FieldView users to track down errors in their code in a sys-
tematic fashion. The debugger is triggered whenever an error occurs during program
execution. The commands given below may then be used to trace the source of the
error(s). The syntax is similar to the ‘dbx’ debugger used on UNIX platforms. The
debugger may be started forcibly during FVX execution by pressing the ESCAPE key,
while the cursor is in the graphics window or by inserting a stop() command within an
FVX file.

assign
assign exp1 = exp2

call procedure(args)
evaluate an assignment or function call immediately

print procedure(args)

cont/c
continue program execution

cont to [line]
continue program execution until specified line is reached

delete [breakpoint_number]
delete specified breakpoint

delete all
delete all breakpoints

down
move down one stack level (argument not supported - always 1)

dump (tbl)
displays all entries in tbl

z_rot number 0
quick_transparency string “on” or “off” “off”

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 252

Table of ContentsIndex

dumpall (tbl)
displays all entries in all nested tables

find ref
print all locations which contain a reference to ref

list
list source code

level num
set stack to specified level

next/n
execute next line (argument not supported - always 1)

print/p
print expressions

quit/q
quit the debugger and return to FieldView

return
execute until function return (argument not supported - always current function)

step
execute next line, stepping into function calls (argument not supported - always 1)

stop at [line]
set a breakpoint at the specified line

stop in [function]
set a breakpoint at the specified function

up
move up one stack level (argument not supported - always 1)

where
display the current call stack (argument not supported - always prints the entire stack)

Access to FVX Programs from the Tools Menu
FVX utilities are located in the fvx_and_restarts subdirectory of the standard Field-
View installation. For information on FVX utilities directly accessible from the FieldView
Tools menu, see FVX Utilities in Chapter 14 of Working with FieldView.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 253

Table of ContentsIndex

Python-Enabled FVX
Although the FVX programming language in FieldView is based on the LUA scripting
language, FieldView is also capable of working with Python and can be used with either
of the two main Python versions (2 or 3). FVX functions can be called from Python, and
Python data structures can be passed in and out of FVX. The implementation involves
integrating a Python environment and custom programming into FieldView. The struc-
ture is sketched below in Figure 99 Python-Enabled FVX Scheme:

Our design implements the FVX post-processing calls such as reading data and creat-
ing, modifying, querying and deleting surfaces and streamlines. This is done in a man-
ner that allows the FVX data structures to be accessed as though they were native
Python structures.

To configure your version of Python, please consult Python Installation (Optional) in
the Installation Guide.

The choice of namespace for Python will have an impact on the command syntax. For
example, choose either of:

import fv FVX cmd is fv.create_boundary
from fv import * FVX cmd is create_boundary

 Figure 99 Python-Enabled FVX Scheme

Python Script invokes FieldView in UNIX SHELL.

An FVX script (LUA)
is executed to start
Python within FV.

A Python script can then be
called and executed in the
Python-FV environment.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 254

Table of ContentsIndex

There are additional implications on the commands themselves. A valid FVX boundary
surface input table is:

boundary_table = { scalar_func = 'Normalized density [PLOT3D]',
types = {'body', 'wing'},
display_type = 'smooth_shading' }

The same input table, in Python would appear as:

boundary_table = { scalar_func : "Normalized density [PLOT3D]",
types : {1 : 'body', 2 : 'wing'},
display_type : 'smooth_shading' }

Support for Tkinter
To provide more Graphical User Interface (GUI) customization options, FieldView sup-
ports the execution of Python scripts which include Tkinter function calls. Tkinter is a
Python binding to the Tk GUI toolkit. With support for a wide range of GUI widgets, it has
become the Python standard for building GUIs.

Tkinter comes with the Python installation provided with FieldView, but if you wish to link
FieldView to your own Python installation, see Python Installation (Optional) in the
Installation Guide.

The figure below shows a Tk panel obtained from the execution of a Python script in Fiel-
dView. This panel shows some examples of the various widgets supported by Tkinter.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 255

Table of ContentsIndex

Such widgets can be used for calling Python-enabled FVX functions. Tkinter support
has been added to the FieldView event loop, allowing two-way interactions between Tk
panels and FieldView, which means that user-defined panels can behave exactly like
original FieldView panels.

Tkinter can be imported in a Python script using the import command:

import Tkinter

Limitations for Tkinter
Tkinter is not supported on the Mac.

Tkinter scripts run from FieldView must use the default root window.

 Figure 100 Custom GUI panel showing some Tkinter widget examples

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 256

Table of ContentsIndex

Known Limitations for Python-Enabled FVX

There is no debugging support. If your Python script has an error in it, it is likely to crash
FieldView.

The FVX make_panel() command is not supported.

FVX functions not enabled for Python:
appendto(filename)
closefile(handle)
dostring(cmd_string)
dump(tbl)
dumpall(tbl)
execute(cmd)
format(string,arg,...)
getn(tbl)
openfile(filename,mode)
read(handle,format...)
readfrom(filename)
remove(filename)
rename(oldname,newname)
self:get()
self:set()
set_view({tbl})
stop()
strfind(string,pattern,...)
tinsert(tbl, pos, value)
tonumber(string[,base])
tostring(number)
tremove(tbl, pos)
type(arg)
write(handle,arg,...)
writeto(filename)

FVX Learning Tools
To better educate users on the versatility and ease of using FVX, several tutorials and
utilities are included on the FieldView DVD.

FVX Tutorial Scripts
FVX scripts have been generated for most of the FieldView tutorials. The scripts are
intended to demonstrate the basic use of FVX to read datasets, create surfaces, and per-
form calculations similar to those actions performed in the FieldView tutorials. In some
cases, FieldView restarts have been used to recreate steps illustrated in the tutorials.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 257

Table of ContentsIndex

To test out these FVX scripts, we recommend that you create a subdirectory or folder.
Put the tutorial dataset into this folder, and copy the FVX scripts and associated restart
files. FVX scripts for each tutorial are located within the respective tutorial folder on the
FieldView DVD and are named according to the following naming convention:

sampleXXXXXXfvx.fvx

where "XXXXXX" indicates the associated tutorial name.

To run these scripts, you do not need to load the data first: the script will do this for you.
Several break points have been introduced into these scripts so that the results of each
intermediate step can be viewed. When a break point is reached, the FVX script is
paused. To advance the FVX script from a break point, you need to have access to the
console window or the window where you launched FieldView. Press Enter to continue
through to the next break point. Since some of these scripts will generate files or anima-
tions, it is important that you have write permissions to these directories.

Note: For maximum utility, try opening an FVX tutorial script in a text editor while running
the same FVX tutorial in FieldView to observe how the FVX syntax and commands cre-
ate each tutorial step.

FVX Templates
As the use of FVX has become more widespread, the need for faster script construction
has been addressed. A set of FVX Templates is included on the FieldView DVD and
FVX_Templates.pdf is located in the fvx_and_restarts subdirectory of the stan-
dard FieldView installation. FVX example commands can be copied from the templates
and pasted into working FVX scripts. Templates for most of the large FVX functions are
included with all possible features printed, allowing the user to customize surfaces,
rakes, feature extractions, plots, GUI panels, output files, etc. with any or all available
options. Unwanted options can be easily deleted or commented out of the FVX script.

Guide FVX saved with Restarts
Whenever you save a Complete; Complete, Current Window; or Current Dataset Restart,
a Guide FVX program is also saved with it automatically. This Guide FVX program con-
tains the FVX commands needed to re-create the surfaces, rakes and other post-pro-
cessing objects that are on the screen at the time that the Restart is written. Our intent
with this feature is to show you the equivalent FVX commands for creating the surfaces,
rakes and annotation objects on the screen. This gives you a way to learn FVX and com-
pare it with what is being saved with your Restarts.

This Guide FVX program has the same rootname as the restart. Not all the functionality
within a full restart can be captured using FVX. For this feature, the Guide FVX program
recreates, as best it can, the same visual representation of the data. For a Complete
Restart, the Guide FVX program contains FVX command language for:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 258

Table of ContentsIndex

• Data Input

• Boundary Surfaces

• Computational Surfaces

• Coordinate Surfaces

• Iso-surfaces

• Streamlines

• Particle Paths

• Annotation

• Dynamic Clipping

Several query functions are available in FVX to return a list of all the boundary surfaces,
scalar and vector functions and surface scalar and surface vector functions. These que-
ries are provided for each dataset in the Guide FVX output.

For the case of transient data, FVX commands to query the transient dataset and do a
transient sweep are written.

Several additional queries to return information on the color table, the streamline display
and particle path display are also included.

For a Complete Restart, the Guide FVX program uses the fv_script command to
launch the component restarts for:

• Formula (.frm)

• Vortex Cores (.vtx)

• View (.vct)

• Colormap (.map)

• 2-D Plots (.lpt)

• Presentation (.prd)

Although the FVX implementation does not cover everything that can be done with
Restarts, the original restart matching the Guide FVX program is saved and can be used
for comparison.

In some instances, it may not be desirable to automatically save the Guide FVX program
with a restart. One example might be a case in which many streamline rakes have been
created - the FVX listing for these rakes is verbose. Therefore, an environment variable,
FV_NO_FVX_RESTART has been implemented to turn this behavior off.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 4 FieldView Extension Language (FVX) 259

Table of ContentsIndex

When FieldView writes a Complete Restart, there are some situations in which a Guide
FVX program is not written. These instances include restarts saved during transient
sweeps, XDB building sweeps, keyframe restarts, and restarts saved when FieldView
terminates unexpectedly. If FieldView is in a multi-window state, a Guide FVX file will
not be saved with a Complete Restart (returning to a single window will allow Guide FVX
saving).

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 260

Table of ContentsIndex

Chapter 5

Restart
Files and
Script Language

Restart files allow the current state of each individual panel, or the state of the entire sys-
tem, to be saved and read in at a later time. In this way, you can restart the system and
bring up a previous view of a particular dataset with only one command. Note that
except for the Complete Restart and Data File options, the names of the dataset input
files are not saved. Thus, by using the individual panel options of the Restart menus, a
new dataset may be viewed in the same way as a previous dataset quite easily. The
Current Dataset option and the Complete, No Data Read option under Open Restart also
facilitate this.

Another Open Restart menu option is Script. FieldView will attempt to interpret the text
in this file as a series of commands, as defined in the FieldView Script Language sec-
tion. You are responsible for creating the script files, with a text editor or a script genera-
tor program, according to the rules described in that section. While executing the script,
command errors are reported to you. FieldView will beep when script execution is com-
pleted or canceled.

Note: FieldView is 100% backward compatible with all Restart Files for all
releases. Every attempt is made to ensure forward compatibility as well.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 261

Table of ContentsIndex

Restart Files Menu
The current state of your FieldView visualization can be saved or restored with the use
of Restart Files.

The Save File and Open File buttons on the Main Menu always open with the Data
Restart (.dat) restart type selected, but can be changed. Also, using the File.. Open
Restart or File.. Save Restart options will produce a file dialog which allows you to
choose the desired restart type, and will default to the last type of restart you had used.

 Figure 101 Save/Open Restart menu options

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 262

Table of ContentsIndex

File Naming Convention
The general form for Restart filenames is: filename.extension

These extensions are automatically appended when saving or reading, except when
saving a Script File.

Automatic Restart
FieldView can read a particular Preference or Complete Restart file during startup by
using a command line argument (-f filename) or by naming the restart file fv. In
addition, FieldView may startup and automatically read in a script file (-s filename).
See Chapter 1 of the User’s Guide for more information.

Restart Flexibility
Certain restarts are more flexible for ease of use in multiple datasets. That is, a visual-
ization created for one dataset and saved to a Complete Restart or Current Dataset
Restart can be used on other datasets, whether the other datasets use the same grid
(but different results) or are completely different. The “flexible” restarts are:

• Boundary Surface
• Clip Groups
• Computational Surface
• Coordinate Surface

File Type Extension
Formula .frm
Data File Input .dat
Computational Surface .cmp
Iso-Surface .iso
Streamlines .stl
Particle Paths .par
Annotation (titles & arrows) .ttl
View (World) .vct
Colormap Specification .map
Surface Plot .plt
Script File .scr
Boundary Surface .bnd
Vortex Cores / Surface Flows .vtx
Coordinate Surface .crd
2-D Plots .lpt
Presentation .prd
Point Probe .prb
Clip Groups (Dynamic Clipping) .dyn

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 263

Table of ContentsIndex

• Iso-Surface
• Particle Paths
• Streamlines
• Vortex Cores/Surface Flows

If an Iso-Surface, Coordinate Surface, or Computational Surface in a flexible restart falls
outside of the range of the Min/Max for the dataset for which it was created, then the
surface will be created at the closest possible value (Min or Max) but the Visibility of the
surface will not be ON. For example, if the restart includes a Z=-0.5 Coordinate Surface
but the current dataset has a Z range of 0.0 to 1.0, then a surface will be created at
Z=0.0 but its Visibility will be OFF.

Streamline seeds and surfaces that were created on a grid that belonged to dataset N will
be deleted if that grid does not exist in dataset N in memory. For example, if a flexible
restart is created with three 9-grid datasets in memory and later read in with only 2 sin-
gle-grid datasets in memory, any surface/rake that is encountered in the restart files that
refer to non-existent grids or datasets will be ignored. For best results, you should have
the same number of grids and datasets for restarts to work in this manner. Another pos-
sible restart mismatch is incompatible coordinate systems (Cartesian vs. Cylindrical) via
the region file (see Chapter 3 of this Reference Manual).

In general, FieldView will ignore surfaces or seeds in any flexible restart in which any
one or more of the following are true:

• Surface or seed refers to a grid number that is greater than the number of grids for
the corresponding dataset.

• Object refers to a dataset number that does not exist for the current session of Field-
View. This is true for all flexible restarts.

• Subsetting is different for the datasets. This applies to Iso-Surfaces, Coordinate Sur-
faces and Computational Surfaces.

Restart saved on Exit from FieldView
Upon exit, FieldView will save a complete restart named "fv_backup_restart". The
'fv_backup_restart' files will be overwritten without confirmation.

For Linux and Mac, FieldView will save the backup restart in:
The directory specified by the environment variable HOME, or
The directory specified by the environment variable TMPDIR, or
/tmp

For Windows, FieldView will save the backup restart in:
"My Documents", or
The directory specified by the environment variable HOME

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 264

Table of ContentsIndex

An environment variable, FV_NO_BACKUP_RESTART, can be used to disable the saving
of the backup restart. The Guide FVX restart, fv_backup_restart.fvx will also be
saved as well unless the environment variable FV_NO_FVX_RESTART is set.

When the exiting is due to calling exit() from an FVX or Python script, FieldView will not
save this restart on exit.

Restart Files Operation
The Save File and Open File buttons on the Main Menu, as well as the File.. Open
Restart or File.. Save Restart options, will produce the following panel.

This entry box displays the current specified directory. To change
the directory name, use the pulldown menu here to navigate to a
different location.

Press Open to read the file or set of files specified above. Reading a restart
file that corresponds to a single panel will make the corresponding panel vis-
ible (with the exception of the Data File Input panel).

To specify the file name,
either choose from the
list above, or type
directly into the entry
box, followed by an
Enter.

It is not necessary to
enter the file extension
as the program will auto-
matically append one for
you.

 Figure 102 Restart File Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 265

Table of ContentsIndex

Note: Some read-only restart file types, such as Script Restart, do not provide
a Save button on the restart panel.

Note: When saving a file, if you give the file the same name as a file that
already exists, you will be given the option to overwrite the existing file (select

Overwrite) or cancel the save operation (select Cancel).

Complete Restart
A Complete Restart is a set of files consisting of all FieldView panels that contain data,
essentially combining the function of all restart types. The Complete Restart panel is
used to specify a base filename (i.e., without an extension). FieldView will automatically
append required file extensions (see table File Naming Convention on page 262) and
save or read all component restarts. Minimally, the following component files are saved
with a Complete Restart:

Data File Input (*.dat)
Colormap (*.map)
View (World) (*.vct)
Presentation (*.prd)
Surface Plot (*.plt)

Script Restart and Point Probe Input are not saved as part of a Complete Restart.

When a Complete Restart is saved interactively, either from the File Save Restart
Complete... fly-out menu (see Figure 101, right) or by pressing the Save Restart icon on
the Main toolbar, the contents of all the windows and the multi-window layout information
is saved. When a Complete Restart is read interactively, either from the File Open
Restart Complete... fly-out menu (see Figure 101, left) or by pressing the Open
Restart icon on the Main toolbar, the contents of all the windows and the multi-window
layout information is restored.

Complete Restarts saved prior to FieldView Release 14 will restore all the visualization
objects for all datasets within a single window.

Note: Pathnames to saved Complete Restart files must be preserved when
referencing them in future FieldView sessions.

For information on reading Complete Restarts with 2D Plots, see 2D Plots Restart on
page 279.

Complete, Current Window...
The Complete, Current Window... Restart entry permits you to save or restore a com-
plete restart from or into the current window of a multi-window layout. Use this to read

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 266

Table of ContentsIndex

single-window restarts, one window at a time, into any multi-window session. In Figure
103, we start with a multi-window layout containing four windows. Restarts for some of
the FieldView tutorial datasets are used to read the data and create the visualizations
shown.

Important Note: Dataset numbering is window relative. In the preceding illustration, we
have four datasets in total. However, in each window, the dataset number for each of the
cases is equal to 1.

Complete Restart, No Data Read
Complete Restart, No Data Read is a read-only restart option that cannot be saved. This
allows a Complete Restart saved for one dataset to be read and used with a different
dataset to create the “same” Computational, Coordinate and Iso-Surfaces and stream-
line rakes. It gives the user an ability to create visualizations for one dataset, and then
use them with a different dataset without recreating all of the surfaces and rakes for the
new dataset. The new dataset may merely be a different solver run on the same grid, a
run on a scaled-up or scaled-down version of the grid or may involve a completely differ-
ent set of grids and results.

 Figure 103 Complete Restarts for some Tutorial Datasets

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 267

Table of ContentsIndex

This particular restart is meant to be used in the following fashion:

1. Read in the first dataset.
2. Make the visualization you want.
3. Save a Complete Restart.
4. Read in a different dataset.
5. Read a Complete Restart, No Data Read which will attempt to create the same sur-

faces and rakes (listed above) that existed in the first dataset on the second dataset.

This restart fully reads all files associated with the complete-restart-name with the
exception of the Data Input restart (.dat), for which FieldView will only obtain dataset
orientation, duplication, scaling, region visibility, and clipping parameters. In addition,
any formulas defined in the Formula Restart (.frm) will be appended to the current set
of formulas.

A benefit of this restart is that an existing visualization can be used with different data-
sets. It can be applied repeatedly to a sequence of datasets to generate a series of illus-
trations (pictures and/or 2D plots) having identical properties (i.e. same surfaces, with
the same scalar ranges and legends shown).

If multiple windows are present, this Complete, No Data Read restart will be applied to
the dataset(s) in the current window only. The multi-window layout will not be affected.

Current Dataset Restart
The Current Dataset Restart reads or saves a set of restart files for the current dataset
only. It lets you apply restarts from one dataset among multiple datasets in a FieldView
session, to another dataset, in that same session. So, for example, you can read in sev-
eral similar datasets, create the desired visualization on the first dataset, and then make
that same visualization on each of the remaining datasets in FieldView.

A Current Dataset Restart can be written for one dataset in one window and read onto
another dataset in a different window. This makes it possible for you to create your
desired visualization on any dataset within one window and then apply it to any dataset in
another window.

The Current Dataset Restart reads or saves only the following component restarts:

• Data File (.dat)
• Computational Surface (.cmp)
• Boundary Surface (.bnd)
• Coordinate Surface (.crd)
• Iso-Surface (.iso)
• Streamlines (.stl)
• Particle Paths (.par)
• Feature Extraction (.vtx) (Vortex Cores / Surface Flows)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 268

Table of ContentsIndex

When a Current Dataset Restart is saved, it saves information about the current dataset
only, regardless of the number of datasets in memory. The .dat file only contains infor-
mation for the current dataset, and component files will only be written for objects that
exist on the current dataset. For example, if there are no Boundary Surfaces present
when a Current Dataset restart is saved, then no Boundary Surface restart will be saved.

When a Current Dataset Restart is read, datasets are not reloaded, nor are any dataset
viewing transforms that may be in the file. First, all objects on the current dataset are
deleted, even objects not part of a Current Dataset Restart, such as 2D Plots. Then, only
the duplication and region parameters from the Data File component restart (.dat) are
read, and the objects in the restart are created on the current dataset.

The Current Dataset Restart differs from the Complete Restart in the way surfaces are
retained or deleted. The Current Dataset Restart applies to objects on the current data-
set only, while preserving objects created on other datasets. By contrast, reading a
Complete Restart deletes all surfaces/rakes on all datasets, then applies of the contents
of the restart.

Objects not connected with datasets which are supported by "global" restarts will not be
affected when reading a Current Dataset Restart, including:

• Annotation objects (titles or arrows) (.ttl)
• Formulas (.frm)
• Colormaps (.map)
• View (World) (.vct)
• Presentation Rendering Settings (.prd)

See Restart Flexibility on page 262 for more information.

Multi-Window Layout...
The Multi-Window Layout Restart lets you save your arrangement of multiple windows.
This allows you to easily re-use a previously created layout without also having to read
the data that was saved with the layout.

Within the Multi-Window Layout Restart, the size and placement of each window is
stored. The window attributes (see Multi-Window Operation in Working with Field-
View) are also stored for each window. The Multi-Window Layout Restart also stores
context which associates datasets, based on the order in which they have been read or
created via a Copy action, with specific windows.

The Multi-Window Layout restart is written when saving a Complete Restart, and is auto-
matically read when opening a Complete Restart.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 269

Table of ContentsIndex

Layouts are not saved as part of your FieldView preferences on exit. As a result, Field-
View will continue to start with a single window unless a Complete Restart is read at
start-up.

To see how a Multi-Window Layout restart works, consider the starting example in Fig-
ure 104 above. To re-distribute the two datasets into different windows, we need to read
a Multi-Window Layout restart that contains two windows.

 Figure 104 Two datasets in a single window

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 270

Table of ContentsIndex

In Figure 105 above, a previously saved Multi-Window Layout describing two windows,
side by side in a vertical orientation is used to re-distribute the two starting datasets.
When a re-distribution of datasets is going to occur as a result of reading a Multi-Window
Layout Restart, the following warning (see Figure 106) is displayed giving you the oppor-
tunity to cancel the operation.

To reposition the datasets into a more suitable layout, such as a top and bottom horizon-
tal orientation, another Multi-Window Layout Restart can be applied as shown in Figure
107.

 Figure 105 Applying a Multi-Window Layout Restart

 Figure 106 Layout Replace Warning

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 271

Table of ContentsIndex

The preceding two cases illustrate how datasets are re-distributed when the number of
datasets is equal to the number of windows. When the number of datasets is greater
than the number of windows, datasets are distributed one per window until the last win-
dow is reached. At that point, all remaining datasets are placed into the last window, as
illustrated in Figure 108.
.

In this example, the datasets sent to the last window will need to be transformed (at the
Dataset level), since they will be placed one on top of the other.

 Figure 107 Number of Datasets equals Number of Windows

 Figure 108 Number of Datasets greater than Number of Windows

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 272

Table of ContentsIndex

When the number of datasets is less than the number of windows, datasets are simply
distributed one per window and some windows in the layout will be empty, as illustrated
in Figure 109.

Layout Restart Files
Starting with FieldView 14, FieldView has the ability to display multiple windows. The
number and relative size of these windows can be saved to a Multi-Window Layout
Restart file. This layout can then be applied to a FieldView session by opening the cor-
responding Restart.

Since defining complex layouts can be tiresome, especially when trying multiple windows
of the exact same size, the FieldView installation directory now provides a number of
default Layout Restart files, under

$FV_HOME/fvx_and_restarts/layout_restarts

These Restart files can be applied to a FieldView session through the following menu:

File > Open Restart > Multi-Window Layout

The following table summarizes available Layout Restart files.

 Figure 109 Number of Datasets less than Number of Windows

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 273

Table of ContentsIndex

1 x 2h 1 x 2v

2h x 1 2v x 1

2 x 2 3 horiz.

3 vert.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 274

Table of ContentsIndex

Preference Restart
The Preference Restart reads or saves a set of five restart files:

• View (World) (fv.vct)
• Colormap (fv.map)
• Surface Plot (fv.plt)
• Formula (fv.frm)

Preference Restarts are written to the current directory using a default filename of fv to
match the default behavior of Automatic Restart (see Preference Restart on page 12 of
the User’s Guide for information on where they can be placed to load automatically.)

If a Preference Restart file contains information irrelevant to the current dataset, it will be
ignored, usually silently. For example, if the Surface Plot current slice value is I=16 and
the current dataset has an Imax=10, then the Surface Plot slice value will be its default
value of 1, not 16.

Script Restart
The Script Restart option is used to execute files containing Script Language commands.
See the section FieldView Script Language Commands on page 280 for details.

Formula Restart
The Formula Restart will save all formulas that have been defined by the Function For-
mula Specification panel. The names of the functions that were used in the formula will
be saved exactly, and the formula will only be displayed when all of the necessary infor-
mation is present to calculate it. For example, a formula created using the variable
Pressure only appears when the variable Pressure is defined. This allows the For-
mula Restart to be used as a library of previously defined formulas that only have to be
created once.

If the Formula Restart file contains formulas which require variables which do not exist in
the current dataset, the creation of those formulas will fail silently and will not exist in the
Function Selection panel.

When a Formula Restart is read in, if other formulas already exist in memory, you will be
given the option of appending the new formulas to the existing ones, or replacing the for-
mulas in memory with the ones from the file.

Note that formulas must have unique names. Thus when reading in a Formula Restart
file, if a name in that file matches a name that already exists (from a solver file, for exam-
ple), the formula in the restart file will be skipped, and a warning message will be issued.

The format of a Formula Restart is as follows:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 275

Table of ContentsIndex

The first line is a header that should read:

formula_restart_version: 1

Next the formulas are defined in two lines. The first line is the name of the formula, and
the second line is the formula itself. Any math functions used will appear in the Formula
Restart exactly as they appear on the Formula Specification panel. Any function names
used will appear in double quotes. For example, a formula named Velocity calculated as
Density divided by Momentum would appear in the restart as:

Velocity
"Density"/"Momentum"

A function named Vorticity equal to the curl of the Velocity would appear as follows:

Vorticity
curl("Velocity")

Data File Input
The Data File Input Restart saves all information of datasets, including transformations
(the result of any Rotate / Zoom / Translate operations) for each dataset and any Dupli-
cation information (mirroring or rotating). The Visibility of each dataset is NOT saved.

The Data File Input Restart File includes the Function File pathname, the subsetting
information, and the names decided on for each selected variable (including vector
names). It does not include the name file pathname, since the names are stored directly
in the restart file. Thus, changes to the Name File after the Restart File is created will
have no effect on the restart.

Note: FieldView expects all data files referenced to have the identical path-
names as when the restart was saved.

Note: If Data Restart files are hand-edited and the path removed from the file-
name field, FieldView will not properly recognize a transient dataset upon

read-in.

Computational Surface
The Computational Surface Restart File saves all Computational Surfaces across all
datasets. It includes information about each surface and any associated legends.

Iso-Surface
The Iso-Surface Restart File saves all Iso-Surfaces across all datasets. It includes infor-
mation about each surface and any associated legends.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 276

Table of ContentsIndex

Streamlines
The Streamlines Restart File saves all rakes. It includes information about each rake
and any associated legends. A Streamline Restart can also be used as a template for
placing seeds at specific IJK or XYZ locations, described as follows:

Streamline Template
This procedure uses the Streamlines Panel (see Chapter 6 of Working with FieldView)
to create ’dummy’ seeds, which are saved in a Streamline Restart file and edited to the
desired locations.

1. With a dataset in memory, create a Streamline rake with a couple of seeds. Use
either IJK Int or XYZ for the SEED COORDINATES (this technique is less effec-
tive in IJK Real mode).

2. Save a Streamline Restart.
3. Open the Streamline Restart (*.stl) file in your favorite editor. This step and the

next can be done in a program outside of FieldView in any number of languages.
4. Replace the current seeds with the desired seed positions, using the same format.
5. Read the new Streamline Restart into FieldView. This will replace the current rake

(with the few ‘dummy’ seeds) with the restart file seed positions.

Assuming the same dataset is used to create the ‘dummy’ template and read the edited
restart back in, the streamline seeds should appear at the desired locations.

There are several portions of the Streamline Restart file that need to change: the
total_seeds value near the top of the file (this is the total number of all seeds in all
rakes, summed up), information about the number of seeds (num_seeds), and the seed
positions. The only seed position information that is required for IJK Int seeding is
the grid number and the IJK values. The XYZ position information is defaulted (with
an “*”). For XYZ seeding, the opposite is true.

Note: Using an invalid Streamline Restart file may result in no seeds being shown. For
example, using a Streamline Restart file with only IJK Int seeding on an unstructured
dataset will result in the seeds being silently thrown away and no seeds or streamlines
will be produced.

Example: IJK Int Seeding

The following shows the portion of a Streamline Restart file made for the F18 dataset
(used in the /demo script and /aerospace tutorial). Three randomly placed seeds
were created on Grid #3 on an I=14 Computational Surface. This created a Streamline
Restart file from which only the relevant portion to edit is shown:

num_seeds: 3
seed_ijk: 3 14.000000 9.000000 28.000000
seed_xyz: *
seed_ijk: 3 14.000000 9.000000 25.000000

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 277

Table of ContentsIndex

seed_xyz: *
seed_ijk: 3 14.000000 10.000000 23.000000
seed_xyz: *

Merely edit the IJK values to those desired, increasing the num_seeds value if addi-
tional seeds are needed. For example:

num_seeds: 5
seed_ijk: 3 14 3 2
seed_xyz: *
seed_ijk: 3 14 3 4
seed_xyz: *
seed_ijk: 3 14 3 6
seed_xyz: *
seed_ijk: 3 14 3 8
seed_xyz: *
seed_ijk: 3 14 3 10
seed_xyz: *

The format of the numbers is not important, nor is their spacing. The only requirement is
that the IJK or XYZ values have at least one (1) space between each value.

Example: XYZ Seeding

The following shows the portion of a Streamline Restart file made for the F18 dataset
(used in the /demo script and /aerospace tutorial). Three randomly placed seeds
were created on Grid #3 on an X=1.5 Coordinate Surface. This created a Streamline
Restart file from which only the relevant portion to edit is shown:

num_seeds: 3
seed_ijk: *
seed_xyz: 1.50000000e+000 9.92904082e-002 3.32836539e-001
seed_ijk: *
seed_xyz: 1.50000000e+000 7.64748678e-002 4.49470043e-001
seed_ijk: *
seed_xyz: 1.50000000e+000 1.11091778e-001 6.22056007e-001

Merely edit the IJK values to those desired, increasing the num_seeds value if addi-
tional seeds are needed. For example:

num_seeds: 4
seed_ijk: *
seed_xyz: 1.5 0.01 0.33
seed_ijk: *
seed_xyz: 1.5 0.02 0.43
seed_ijk: *

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 278

Table of ContentsIndex

seed_xyz: 1.5 0.03 0.53
seed_ijk: *
seed_xyz: 1.5 0.04 0.63

The format of the numbers is not important, nor is their spacing. The only requirement is
that the IJK or XYZ values have at least one (1) space between each value.

Particle Paths
The Particle Paths Restart File saves all of the paths information. It includes information
about each group of paths and any associated legends.

Annotation
The Annotation Restart File saves all titles and arrows. It includes information about
each title and arrow such as position, font, color, size, etc.

View (World)
The View (World) Restart File saves the current World transform specification. This file
includes the current settings for Rotate, Translation, and Zoom for the Object World. It
also includes information about Outline, Perspective and the axis marker. Note: All
Dataset transforms are stored in the Data File Input Restart File.

Colormap Specification
The Colormap Specification Restart File saves the current settings for Geometric Color,
Background Color, Colormap, Filled Contour, Invert, and the RGB values of the 8 edit-
able geometric colors. If the Colormap setting is User Defined, the pathname of your
colormap file will be present.

FieldView stores information about the 10 geometric colors in the Scalar Colormap file.
In addition to the geometric color (geom_color) and background color (back_color)
entries in the Scalar Colormap file, each surface (*.bnd, *.crd, *.cmp, *.iso), rake
(*.stl, *.par), feature extraction object (*.vtx) and annotation (*.ttl) restart file
contains a color entry followed by the color index. The default color indices and their
associated colors are given in the following table. Note that color indices 1 and 2 (for
black and white, respectively) cannot be changed by the user. The other color indices
can be assigned to different colors using the Color Mixer feature (see Chapter 14 of
Working with FieldView). The actual Red, Green, Blue (RGB) values associated with
each of the 8 editable geometric colors is given in the Scalar Colormap file.

1 2 3 4 5

black white red green blue

6 7 8 9 10

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 279

Table of ContentsIndex

Surface Plot
This restart file saves the setting from the Surface Plot sub-panel on the Computational
Surface panel.

Boundary Surface
This restart file saves all boundary surfaces. It includes information about each surface
and any associated legends.

Vortex Cores / Surface Flows
This restart file saves all vortex core and surface flow information. It does not include
shock surface information, which is a type of Iso-Surface and saved in the Iso-Surface
restart file. Vortex Cores / Surface Flows restart behaviors include the following:

1. Target boundary surface(s) #1, #2, etc. for a given Surface Flow restart must exist,
otherwise the Surface Flow will fail to be re-created, and FieldView will print:

Dataset 1, Object 1 (Surface Restricted Flow: No Slip) created,
but some or all of the dependent boundary surfaces do not exist.

2. If the target surface(s) exists, but has changed extent (thresholding, or number of
boundary types), the Surface Flow will re-calculate based on the new settings. This
is not true for Dynamic Clipping; if performed before the restart is loaded, the clip has
no effect on the Surface Flow lines.

3. If the target boundary surface(s) has Visiblity=off, it will still be used to re-calculate
the Surface Flow.

Coordinate Surface
This restart file saves all Coordinate Surfaces. It includes information about each sur-
face and any associated legends.

2D Plots Restart
This restart file saves all information from the 2D Plot panel. When this restart is read
back in, the 2D Plot panel becomes the current visualization panel. FieldView behavior
has changed when reading Complete Restarts from earlier versions. If the Complete
Restart includes any 2D Plot specifications the 2D Plot panel will become the current
visualization panel while reading the Complete Restart. Since curve plots are dependent
on surfaces this assures that the surface exists prior to recalculating the plot. If the Com-
plete Restart does not specify any 2D Plots, FieldView behavior is unchanged.

cyan magenta yellow purple gray

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 280

Table of ContentsIndex

Point Probe Input
This option allows the user to read in a file (.csv, .txt, or .mat format) containing a series
of XYZ values and have FieldView output a file (using the same format) repeating those
coordinates, as well as the value of the current scalar/vector functions at each coordi-
nate. This feature is also available via Tools.. Point Query. This feature is further
described in section Point Query... in Chapter 14 of Working with FieldView.

If the Point Probe panel is up when saving a Complete Restart, a "hidden" Point Probe
file will be created and read with the Complete or Complete, No Data Read Restart. The
hidden file cannot be restarted individually; it exists so FieldView can properly load reg-
isters on the Point Probe panel during transient sequences.

The Point Probe panel is documented in Chapter 13 of Working with FieldView.

Presentation Render
This restart file saves all current information about Presentation Rendering. It includes
information about surfaces and rake types that have Presentation Rendering turned ON,
plus values for the Highlight Size and Intensity parameters.

Clip Groups
This restart file saves the properties of all clip groups created in the current FieldView
session. The clip lines and/or boxes stored within each clip group are independent of the
dataset on which they were created. Thus, the user can read-in and apply a Clip Groups
Restart to any dataset in FieldView. For more information on Dynamic Clipping, see
Chapter 14 of Working with FieldView.

FieldView Script Language Commands
The Script Language feature allows you to save a text file to replay common FieldView
operations. A useful set of commands is provided for better control of replays, such as
PAUSE and SLEEP. The Script File can later be executed using the Script Restart option
in the Restart Files menu or restarted automatically during FieldView startup with the -s
command line switch (see Chapter 1 of the User’s Guide).

Running a Script
The Script filename must be saved with the extension .scr.

All command words may be in upper or lower case, or any mixture of these.

Leading and trailing blanks are ignored.

Lines beginning with an exclamation point (!) are considered to be comment lines and
are ignored during execution.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 281

Table of ContentsIndex

Filenames may need to be quoted in some script commands. See descriptions of indi-
vidual script commands for specific instances.

Conditions
FieldView will “beep” your display when script execution is completed or canceled.

Since a SCRIPT containing the command, PANELS OFF, makes it impossible to stop a
long task in FieldView, a script abort has been provided. The ESCAPE key will be the
abort “hot” key and will be active during the execution of any script. When the ESCAPE
key is pressed, the user will presented with a confirmation pop-up. If the abort is con-
firmed, the FieldView script will exit after the current script command finishes. If the
ESCAPE key is pressed during an INTERPOLATE or SWEEP script command, these will
completely finish before the script is exited. Note: If you have explicit pointer focus pol-
icy on your computer, you may have to click in the graphics window before the ESC key
will have an effect.

Syntax
The FieldView Script Language includes the following commands (listed in alphabetical
order):

3DPDF_WRITE
3DPDF_WRITE filename

The script command 3DPDF_WRITE exports the current window as a 3D PDF format
file. For more details, see 3D PDF Write in Working with FieldView.

ALIGN

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 282

Table of ContentsIndex

ALIGN +X/+Y/+Z/-X/-Y/-Z

The first form of the ALIGN command takes a single viewing direction argument from one

of the six possible options. It will have the same effect as navigating to the Align... panel
and choosing from one of the six available viewing directions.

The second form of the ALIGN command supports the 8 isometric views. There must be
3 arguments, specified in XYZ order. The 8 valid combinations are:

 Figure 110 Script View Controls and matching GUI actions

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 283

Table of ContentsIndex

+X +Y +Z
+X +Y -Z
+X -Y +Z
+X -Y -Z
-X +Y +Z
-X +Y -Z
-X -Y +Z
-X -Y -Z

For example, the following script commands would generate errors:

ALIGN +X -X +Z
ALIGN +Z +Y +X

Applying the script commands in the order of:

ALIGN +X
ALIGN +Y
ALIGN +Z

is not the same as the applying the isometric view ALIGN +X, +Y, +Z. This is consis-
tent with what would happen if the user interacts with the GUI.

ANIMATE
ANIMATE number-of-cycles

The script command ANIMATE allows scripted animation of curved vectors on a coordi-
nate surface that has them. It can also animate particle paths and streamlines, just as
SWEEP number-of-cycles does.

ANTIALIAS
ANTIALIAS ON/OFF

Turns anti-aliasing ON or OFF when rendering in the graphics window.

AXIS_MARKER
AXIS_MARKER ON/OFF

When encountered in a script, this will set the state of the AXIS_MARKER toggle. If the
AXIS_MARKER is ON already and the script command is issued to redundantly turn the
AXIS_MARKER ON, then nothing will change. The script command is explicit and
requires either ON or OFF.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 284

Table of ContentsIndex

To simply control the background color, the command is:
BACKGROUND
BACKGROUND color n

where n is either an index from 1-8 representing one of the user-definable colors in the
color palette, or one of the strings, "white" or "black", corresponding to the fixed col-
ors in the color palette. An illustration of the color number assignments is shown in Fig-
ure 111 Summary of Image Background SCRIPT command. The BACKGROUND script
commands can be used to create a dynamic script or FVX program by applying a series
of backgrounds to an animation or transient sequence.

The script command to permit the automated operation of selecting and applying a back-
ground image is:
BACKGROUND position-type filename

position-type is one of STRETCH, CENTER, FIT or OFF, and
filename is the full name of the background image file

Note: If position-type is OFF, filename should be omitted to avoid a script error.

 Figure 111 Summary of Image Background SCRIPT command

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 285

Table of ContentsIndex

CENTER
CENTER [XX YY ZZ]

When encountered in a script, this will apply the CENTER action at the Object: World
Transform level. Executing this script command before any data has been read into Fiel-
dView will do nothing, and no warning error or message will be issued.

The arguments XX, YY and ZZ are optional and correspond to values that the user can
set in the Align... panel (see Figure 110 Script View Controls and matching GUI
actions) to specify a center of view which is different from the default of 0, 0, 0. If the
script command is called with these arguments, it will be the same as if a user has navi-
gated to the Align... panel, entered values in the SET CENTER GUI for X, Y and Z, and
then pressed the View button.

The CENTER script command works at the World level of the transform hierarchy. At
present, there is no support for centering at lower levels of the transform hierarchy such
as Dataset, Region or Surface. Note: The CENTER script command (without arguments)
will typically produce a result which would be different from the command with XYZ argu-
ments, because it will center all visible objects on screen, not center around 0,0,0 World
Coordinates.

The CENTER script command will produce a result which can be different from CENTER
0 0 0.

DATASET_SAMPLING
DATASET_SAMPLING results_target_dataset_number sampled_data-
set_name

results_target_dataset_number = number (order) of Results Target
sampled_dataset_name = name of Sampled Dataset to be created

Use the command above to automate the process of creating Sampled Datasets.

DEMOTION
DEMOTION n [n]

This command allows you to change the demotion mode. This may be useful if rotating
very large datasets, etc. The syntax is:

DEMOTION 0 None
DEMOTION 1 Bbox
DEMOTION 2 3 Points (and Subset Number)
DEMOTION 3 Wireframe
DEMOTION 4 Simple

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 286

Table of ContentsIndex

Due to the single-color-per-face display of face data, demotion of boundary surfaces with
face data is handled differently. If DEMOTION is set for Points or Wireframe
(mesh), then the demotion color will be white (if the background is black) or black (if the
background is white).

DUPLICATION dataset-number NONE

Setting DUPLICATION to none, will turn off any current duplication settings which may
be acive for your Dataset.

DUPLICATION dataset-number MIRROR axis1 [axis2 [axis3]]

This command allows you to automate the mirroring of a dataset around any or all model
axes. The axis can be specified as any one of X, Y or Z. There can be up to three axis
fields specified. Any entries after three valid axes will be silently ignored.

If an axis is repeated, for example: DUPLICATION 1 MIRROR X X Y

It counts as a valid axis value, but is redundant. The above command will result in the
dataset being mirrored around the X and Y axes.

 Figure 112 Interactive Dataset Mirror Copy

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 287

Table of ContentsIndex

DUPLICATION dataset-number TRANSLATE axis1 total_copies1 delta1
[axis2 total_copies2 delta2 [axis3 total_copies3 delta3]]

This command is used to perform automated translational copies of a dataset.

One, two, or all three axis can be specified. If an axis is specified, total_copies and delta
must also be set for that axis. The delta field will accept an asterisk ’*’ as a value in order
to default to your CFD data’s range for that axis.

DUPLICATION dataset-number ROTATE axis total_copies total_sweep

This command is used to perform an automated rotational copy of a dataset.

The axis argument is either X, Y or Z. The total number of copies is an integer number
between 1 and 360, and the total sweep is a real number specifying the the total sweep
range, in degrees, for a copy. Setting a total number of copies to 4, and a total sweep to
90 creates 4 copies spanning a total range of 360 degrees.

 Figure 113 Interactive Dataset Translate Copy

 Figure 114 Interactive Dataset Rotational Copy

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 288

Table of ContentsIndex

ENABLE_SWEEP_EXPORT [TEXT | MAT-File | CSV] COORD "filename"
ENABLE_SWEEP_EXPORT [TEXT | MAT-File | CSV] BOUNDARY "filename"

This command (see Transient Export... in Working with FieldView) will affect the next
SWEEP TIME command encountered and the surface will be exported at each step of
the time sweep. Note: Putting the filename in double quotes is optional.

EXIT
EXIT

This command will automatically exit FieldView without a confirmation.

EXPORT
EXPORT COMP filename
EXPORT ISO filename
EXPORT [MAT-File | CSV] COORD filename
EXPORT [MAT-File | CSV] BOUNDARY filename
EXPORT STREAM filenae
EXPORT PLOT filename
EXPORT VCORE filename

EXPORT only works on the current object of the current dataset. In order to EXPORT the
desired object, it may be necessary to first use the SELECT DATASET and the SELECT
commands for the corresponding object, to be sure the object of interest is the one which
is exported. These SELECT commands are described below.

Note: Putting the filename that appears in the EXPORT command in double
quotes is optional.

Note: There is no script support for exporting a Surface Plot with this EXPORT
command.

These commands will export information from the current object into the given output file.
If the specified filename exists, it will be overwritten .

If the optional format argument MAT-File is specified for a supported object and
"filename" does not include the extension .mat, .mat will be appended. If the
optional format argument CSV is specified for a supported object and "filename"
does not include the extension .csv, .csv will be appended. If a format option is not
specified, the current object will be exported as a file without an extension, as in previous
versions of FieldView. For more information on the EXPORT feature, see the EXPORT
section of Chapter 14 of Working with FieldView. For the format of the exported file,
see Appendix I of this Reference Manual.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 289

Table of ContentsIndex

If there is no current object, no error message will be displayed, and no file will be cre-
ated. Errors will be reported opening/writing the specified file and if a format argument is
given for an unsupported object.

Cylindrical Note: When cylindrical coordinates are specified using an FVREG
file (Region definition), the XYZ labels (and values) become RTZ (Radius,
Theta, Z) labels and values for Iso-Surfaces, Coordinate Surfaces and Bound-
ary Surfaces. Computational Surface exports are unaffected. See Chapter 3
for more information.

FIT
FIT

The script command FIT takes no arguments and operates on all 3D data objects with
visibility on. FIT adjusts the World transform by applying a CENTER command, then
zooming and translating to best fit the current window. This should result in no more than
a small percentage of blank space on each side of the visible objects along the tightest
direction, vertical or horizontal, of the current window.

Note: The FIT command uses an iterative process to adjust the view, which
takes more time than the simpler CENTER command. When writing scripts, it
is recommended to only call the FIT command when an update to the scene
requires it.

In the event that the FIT operation fails, a warning is issued and a default view is set.

INTEGRATE
INTEGRATE [current | all | sweep] filename

If the specified filename already exists, the information will be appended to that file.
When an append is done, two blank lines will be inserted before the new output.

The file format for the script command INTEGRATE sweep is the same as if it had been
done interactively.

The file format for the current and all options is:

Integral of S = [function name] on [current <type> surface |
all surfaces]

<blank line>
Integral Surface Area Average Value
<value> <value> <value>

Face Data

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 290

Table of ContentsIndex

If the argument is current and face data exists for the current boundary surface being
integrated, then the file format becomes:

Integral of S = [function name], V = [function name] on [cur-
rent boundary surface]:

 <blank line>
Integral Surface Area Average Value Int(S*Nx) Int(S*Ny)
<value> <value> <value> <value> <value>

Int(S*Nz) Int(V dot N)
<value> <value>

Notes:

The first line will omit “, V = [function name]” if surface normal direction
information is not available, or if the vector register is empty.

Columns 4-7 will be omitted if surface normal direction information is not available.

Column 7 will be omitted if the vector register is empty.

Conditions that require confirmation interactively will assume confirmation when the
script command is executed (for example, the subset increment is > 1 confirma-
tion).

Error conditions will be reported. For example, if an INTEGRATE is attempted and the
current surface has no Scalar Function defined for it, an error pop-up will be produced.

The Integration Controls panel will not be displayed when an INTEGRATE script com-
mand is executed.

Note: This script command does not support transient sweep integration.

INTERPOLATE
INTERPOLATE number-of-steps view-restart-file

This command interpolates between the current view and the view defined in the speci-
fied Transform Controls (World) restart file, view-restart-file, where number-of-
steps is a positive integer specifying the number of interpolation steps. For example, if
number-of-steps is 2, for the first step the view will change to one that is halfway
between the current view and the view in view-restart-file, and for the second

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 291

Table of ContentsIndex

step the view will change to the view in view-restart-file. The name of view-
restart-file may include full pathnames, but wildcards are not expanded.

Note: The script INTERPOLATE command will transition between views without obeying
the specified center of rotation if this was changed by using the Set Center of Rotation
controls (and subsequently saved in restart files used with the INTERPOLATE com-
mand).

KEYFRAME
KEYFRAME [start-frame end-frame [frame-increment]] filename

The KEYFRAME script command accepts optional start-frame, end-frame and
frame-increment arguments. Batch mode also supports the keyframe restart, so a
keyframe animation can be made in this fashion. Using multiple KEYFRAME commands
in a single script will allow you to assemble separate animation scenes into a complex
whole.

Note that the ESC key functions as an abort command which takes place after the current
script command is finished. Pressing the ESC key during script execution of a keyframe
restart will stop the script after the keyframe is finished, meaning that the animation will
play through completely before aborting.

LIGHTINGVALUES
LIGHTINGVALUES ambient-light diffuse-light

The LIGHTINGVALUES script command provides the option to change the lighting
parameters. Both input parameters are required and have a valid range of 0 to 1. Val-
ues of 0.3 for ambient-light and 0.7 for diffuse-light correspond to the Field-
View defaults.

LINKED_SURFACE_SWEEP
LINKED_SURFACE_SWEEP ON/OFF

The script command LINKED_SURFACE_SWEEP ON changes the mode of FieldView to
permit linked surface sweeping. A script command following this command to sweep a
surface will sweep all like surfaces. To select a particular surface to be used as the con-
trol surface for linked sweeping, use the SELECT script command.

MAXIMIZE
MAXIMIZE ON/OFF

The script command MAXIMIZE ON makes the graphics window full screen size as if the
user had pressed the maximize button in the window frame.

The script command MAXIMIZE OFF returns the graphics window to its original size
(prior to the previous maximize command). If there was no previous MAXIMIZE ON

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 292

Table of ContentsIndex

command, the MAXIMIZE OFF command will be ignored. See also the script command
PANELS ON/OFF.

OUTLINE
OUTLINE ON/OFF

When encountered in a script, this sets the state of the OUTLINE toggle. If OUTLINE is
already ON and the script command is issued to redundantly turn OUTLINE ON, nothing
will change. The command is explicit and requires either ON or OFF.

PANELS
PANELS ON/OFF

The script command PANELS OFF will shut off any subsequent display or updating of
panels in FieldView for the remainder of the script or until a PANELS ON command. It
will do this by removing them. This will help ensure that a full screen graphics window
will not be covered up by a FieldView panel at any time during the script.

In a PANELS OFF state, the PLOT and RESTART PLOT commands display the Plot Dis-
play, overlaying the graphics window if it is maximized. The Plot Controls panel, how-
ever, will not appear. Otherwise, script commands which normally cause a panel to
appear will do everything they normally do except make the panel appear. Panels that
are open when the PANELS OFF command is encountered will remain open but will not
be updated until a PANELS ON command is issued.

The following pop-ups are not affected by the PANELS OFF command:

The script PAUSE popup
Error pop-ups

These pop-ups will always appear if necessary.

The script command PANELS ON will allow FieldView to display/update panels again.

PAUSE
PAUSE

This command displays a small PAUSE dialog box in the upper right corner of the screen.
FieldView will wait for you to click the OK button before continuing.

PERSPECTIVE
PERSPECTIVE ON NN/OFF

When encountered in a script, the state of PERSPECTIVE can be toggled either ON or
OFF. If PERSPECTIVE is already ON and the script command is issued redundantly, it will
stay ON. When turning PERSPECTIVE ON, the optional value of NN is applied. The num-
ber NN will be silently clamped to the allowable range of values 1-179, as it is when set

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 293

Table of ContentsIndex

in the FieldView GUI, where lower values approach no PERSPECTIVE and higher val-
ues approach a fish-eye lens effect.

PLOT
PLOT

The PLOT command will bring up a line plot of the current computational surface. This
command is similar in action to Select, but is used for Surface Plots.

PLOT_SIZE
PLOT_SIZE width height

This command resizes the 2D Plot Window to the specified width and height, which
are required arguments with values in pixel dimensions. When used with the PRINT
PLOT command, the PLOT_SIZE command generates an output file based on the speci-
fied dimensions. Note that the plot window cannot be set below 500x400 pixels.

PRESENTATION
PRESENTATION ON/OFF

Turns Presentation Rendering ON or OFF.

Note: In general, the following PRINT commands are used with an output file-
name argument. If no filename is given, FieldView will provide one and place it
in the directory specified by your TMPDIR environment variable. For example,
a PNG format file created by user 'myname' on the 17th of December, at
1:27:09 PM will result in a file myname.17Dec19.13.27.090000604801.png

(where the 10 extra randomized characters are provided to avoid file overwrite in the
same second.)

PRINT <GRAPHICS|WINDOW> <BMP|JPEG|PNG|TIFF|EMF> [filename]
PRINT <GRAPHICS|WINDOW> <PS|EPS> [[BACK|NOBACK] [SEND|NOSEND]
 [GRAY|NOGRAY]] [filename]
PRINT PLOT <BMP|PNG|EMF> [filename]

Note that <> arguments to the command are required, and [] are optional arguments, and
that the EMF output option applies only to Windows.

Example usage:
PRINT GRAPHICS PNG myimage
 ..produces an output image of the FieldView Graphics window. This may consist of
 multiple windows.
PRINT WINDOW PNG myimage
 ..produces an output image of only a single window.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 294

Table of ContentsIndex

The PLOT argument requires that either the Surface Plot or 2DPlot Window is open.
 If neither panel is open, an error message will be issued.

Note about additional Postscript <PS|EPS> options:

For Postscript <PS|EPS> output, there are four optional settings to determine if the back-
ground color should be preserved or not, whether the file should be sent to the printer,
whether it should be printed in gray scale, and the name of the file. The default settings
are: BACK (use white background), NOSEND (don't send to the printer), NOGRAY (don't
use gray scale), and use the default filename. Note: The options BACK/NOBACK and
GRAY/NOGRAY only apply to GRAPHICS window printed files. When the SEND option is
used, FieldView creates a temporary PostScript file and sends it to the printer. The file is
removed unless an output file is also specified. See Chapter 7, for reference to the script
fv_to_printer.sh.sample, required to enable the SEND argument.

PROBE
PROBE dataset-number x y z
PROBE [MAT-File | CSV] dataset-number "file1" "file2"

This feature provides the functionality of Point Probing, combined with the scripting lan-
guage. The functions which will be returned and written to the output file, are those which
currently reside in the Function Registers, as set by the last visited or created visualiza-
tion object. There are two forms of this command. The first will make the Point Probe
panel the current visualization panel and behave as if the user had probed at the given
location. It does not produce an output file.

The second form, without the MAT-File or CSV argument, will read a file in a format iden-
tical to Point Probe Input (a simple column of three coordinate values) and write a new
file ("file2") in a format as described in Appendix G 2D Plot Format. If one of the
optional format argument [MAT-File | CSV] is specified, a MAT-File or CSV file will be
read and written. For information on MAT-File and CSV, see Point Query... in Chapter
14 of Working with FieldView. The MAT-File format is the most computationally efficient
format and is detailed in Appendix J; CSV is detailed in Appendix K

Note: Putting the filenames that appear in the PROBE command in double
quotes is optional.

RAISE
RAISE OFF
RAISE ON

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 295

Table of ContentsIndex

The RAISE commands are used to change the window popping behavior of FieldView.
RAISE ON raises the graphics window to the foreground for every graphics window
update. The 2D Plot Display panel (if present) will be raised over the graphics window.
The purpose of this command is to allow recording of full-screen graphics without inter-
ference from other panels. The momentary panel popping will not appear on videotape
during recording with the STEP or SYSTEM commands. RAISE OFF is the default.

RECORD
Windows:
RECORD ON [GRAPHICS|WINDOW][MP4[framerate]|AVI|PNG|JPEG|BMP|TIFF] filename

Linux/Mac:
RECORD ON [GRAPHICS|WINDOW][MP4[framerate]|PNG|JPEG|BMP|TIFF] filename

The RECORD command is used to create flipbooks from within a script. When RECORD is
turned ON and a filename is given, changes to the graphics window will be recorded in
a flipbook until the OFF command is given. This can allow you to include sweeping of
surfaces, changing of views and sweeping through time, all in one flipbook.

An optional argument allows you to create a flipbook animation from the entire contents
of the graphics window including multi-window layouts (GRAPHICS) or the current win-
dow only (WINDOW). If no argument is specified, the default is WINDOW and a flipbook will
be saved of the current window only, providing backward compatibility for single window
scripts.

To save a flipbook of the current window, use these SCRIPT commands:

SELECT WINDOW window-number
RECORD ON WINDOW filename
(or RECORD ON filename)
 SWEEP ...
RECORD OFF

Optional arguments allow you to specify output format type and frame rate (fps). The
valid output format types are platform specific. Frame rate is only valid for MP4 output.
A script error will be issued if frame rate is specified with a non-MP4 output type. Default
values are consistent with the previous version of FieldView.

For PNG, JPEG, BMP, and TIFF formats, each frame of the flipbook will be saved as an
individual file. A base file name is specified. A one-based frame number will be
appended to the base name for the individual frame file names. These numbers are dis-
played as 4 places with leading zero padding.

RESET
RESET

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 296

Table of ContentsIndex

When this command is called in a script it will return the view to what FieldView has cal-
culated to be the starting view after all dataset(s) have been read in, and before any
transforms have been performed. Intent of this control is to match what will happen if the
user presses the RESET button on the GUI when the Object Transform is set to
WORLD. This setting will be particularly useful after a change to perspective has been
initiated.

RESTART
RESTART ALL complete-restart-name
RESTART ALL_CURRENT_WINDOW current-window-restart-name
RESTART ALL_NO_DATA_READ complete-restart-name
RESTART CURRENT_DATASET current-restart-name
RESTART MULTI_WINDOW_LAYOUT layout-restart-file
RESTART COLOR colormap-restart-file
RESTART COMP computational-surface-restart-file
RESTART DATA data-input-restart-file
RESTART FORMULA formula-restart-file
RESTART ISO iso-surface-restart-file
RESTART PREF preference-restart-name
RESTART STREAM streamlines-restart-file
RESTART PATHS particle-path-restart-file
RESTART TITLES titles-restart-file
RESTART VIEW viewing-controls-restart-file
RESTART PLOT surface-plot-restart-file
RESTART BOUNDARY boundary-restart-file
RESTART LINE 2D-plot-restart-file
RESTART COORD coordinate-surface-restart-file
RESTART PRESENTATION presentation-restart-file
RESTART VCORE vortex-core-restart-file
RESTART DYNAMIC_CLIP clip-groups-restart-file

The RESTART commands perform the specified Restart Files Read operation. The same
RESTART operations are available as on the Restart Files menu, with the exception of
Script Restart itself. The name of the restart file may include full pathnames, but wild-
cards are not expanded. File extensions may be omitted; they are automatically
appended as detailed in “File Naming Convention” on page 262.

When a Complete Restart is read interactively, the contents of all windows and the layout
information is restored. To read a Complete Restart, including the multi-window layout
component restart (if present), use the script command RESTART ALL.

To restore a Complete Restart to the Current Window ONLY in a multi-window session,
use the script command RESTART ALL_CURRENT_WINDOW, noting that a multi-window
layout restart will be ignored (if present).

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 297

Table of ContentsIndex

To apply an existing Complete Restart to one or more datasets without reading the data-
sets originally specified within the restart, use the script command RESTART ALL_NO_-
DATA_READ. If multiple windows are present, this Complete, No Data Read restart will
be applied to the dataset(s) in the current window only. The multi-window layout will not
be affected.

To apply a previously saved restart from one dataset onto another dataset, use the script
command RESTART CURRENT_DATASET. Note that a Current Dataset restart can be
saved for a dataset in one window and applied to a dataset in a different window.

To restore a multi-window layout, use the script command RESTART MULTI_WIN-
DOW_LAYOUT. Note that applying a multi-window layout will likely result in the redistribu-
tion of datasets, and that this action cannot be undone.

SAVE
SAVE ALL complete-restart-name
SAVE ALL_CURRENT_WINDOW current-window-restart-name
SAVE CURRENT_DATASET current-restart-name
SAVE MULTI_WINDOW_LAYOUT layout-restart-file
SAVE COLOR colormap-restart-file
SAVE COMP computational-surface-restart-file
SAVE DATA data-input-restart-file
SAVE FORMULA formula-restart-file
SAVE ISO iso-surface-restart-file
SAVE PREF preference-restart-name
SAVE STREAM streamlines-restart-file
SAVE PATHS particle-path-restart-file
SAVE TITLES titles-restart-file
SAVE VIEW viewing-controls-restart-file
SAVE PLOT surface-plot-restart-file
SAVE BOUNDARY boundary-surface-restart-file
SAVE LINE 2D-plot-restart-file
SAVE COORD coordinate-surface-restart-file
SAVE PRESENTATION presentation-restart-file
SAVE VCORE vortex-core-restart-file
SAVE DYNAMIC_CLIP clip-groups-restart-file

The SAVE command allows the user to automatically save restarts.

When a Complete Restart is saved interactively, the contents of all the windows and the
layout information is saved. To save a Complete Restart, including the multi-window lay-
out component restart, use the script command SAVE ALL.

To save the contents of the Current Window ONLY in a multi-window session, use the
script command SAVE ALL_CURRENT_WINDOW, noting that a multi-window layout restart
will not be written.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 298

Table of ContentsIndex

To save the multi-window layout ONLY at any time during a session, use the script com-
mand SAVE MULTI_WINDOW_LAYOUT.

To save a restart that allows you to re-create the visualization objects on the current
dataset to another dataset, use the script command SAVE CURRENT_DATASET.

Note: If you wish to turn off the display of all surfaces/objects of a particular
type during a script, e.g. computational surfaces, merely create one computa-
tional surface, turn its visibility off and save it out as a Computational Surface
Restart. In the script, restart this file to turn all your computational surfaces off.
The types of surfaces/objects that this technique can be used for is: computa-

tional, coordinate and iso-surfaces, streamlines, annotation and 2-D plots.

SELECT
SELECT COMP grid-number surface-number
SELECT ISO surface-number
SELECT STREAM rake-number
SELECT PATHS path-number
SELECT TITLES title-number
SELECT BOUNDARY boundary-number
SELECT LINE 2D-plot-number
SELECT PLOT plotnum [pathnum]
SELECT COORD surface-number
SELECT VCORE vortex-core-number
SELECT DATASET dataset-number
SELECT WINDOW window-number

The SELECT commands display the specified visualization panel (if not already dis-
played), and select the specified object as the current one on that panel. All actions in
FieldView occur on the current object. If the specified object does not exist, the speci-
fied panel will still be displayed, but the current selection will not change, nor will an error
be generated. All numbers specified should be positive integers; a value of 0 will display
the panel without changing the current selection.

The SELECT PLOT command permits selection of a particular 2D Plot from one of many
2D Plots based on the argument supplied for plotnum. The optional argument path-
num permits selection of a specific plot path within a specific 2D Plot. If a non-existent
value is specified for either plotnum or pathnum, the script will silently pass over the
error. The script command SELECT LINE [pathnum] has been deprecated in favor of
the SELECT PLOT command. However, it will still work and will now be interpreted to
select pathnum on the current 2D plot for the current dataset.

The SELECT DATASET command allows you to switch between datasets in the script.
This is required to export an object that does not belong to the current dataset. This is
also necessary for sweeping through datasets (to pick a different dataset starting point).
This command will also force the visibility of the dataset on.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 299

Table of ContentsIndex

Note: The SELECT PLOT command from a script may not work correctly if
there are multiple datasets unless the SELECT DATASET command is pres-
ent. A warning message will be printed to the xterm window in this case.

Note: SELECT COMP grid-number surface-number may give unexpected results
when multiple datasets are present. This is due to internal Computational Surface num-
bering in FieldView. This command should be preceded by a SELECT DATASET com-
mand. For example, if you have two 2-grid datasets in memory, even if the 2nd dataset is
current, the command SELECT COMP 1 1 will not select the first grid of the second data-
set, but the first grid of the first dataset. To correctly select the first grid of the 2nd dataset,
precede this with a SELECT DATASET 2 command.

Note: Selecting a computational surface requires specifying two numbers: a Grid num-
ber and a Surface number on that grid.

Note: Some Streamline attributes apply for all rakes. Those that do are DISPLAY TYPE
(Complete, Filament, etc.) and whether the streamline is animated or not. Therefore, the
SELECT STREAM rake-number will select a specific rake, but changes in these attri-
butes will affect all rakes in the visualization. It is not possible to animate only certain
rakes, for instance.

For restarts of the type Complete, Current Window..., Complete, No Data Read... or Cur-
rent Dataset..., it may be necessary to specify the current window to ensure that visual-
ization objects are displayed in the correct window. To make a window in a multi-window
layout current, use the script command SELECT WINDOW. For the Current Dataset...
restart type, it may be further necessary to specify the dataset. Dataset numbering is rel-
ative within each window. To select a specific dataset within a window, use the script
command SELECT DATASET.

SHINE
SHINE ON/OFF surface_type

This controls whether the Presentation Rendering property SHINE is added as an attri-
bute to a given surface. Through this command, the user may allow SHINE to exist or
not on several surface types independently. The possible values of surface_type are:
boundary, comp, coord, iso, stream, paths and vcore.

Note: This command will not take effect until a refresh is performed. Therefore, if you
wish this command to take effect before the script is exited, you must use the SELECT
command on the appropriate surface/rake.

SHINEVALUES
SHINEVALUES shine_intensity shine_highlight_size

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 300

Table of ContentsIndex

This script commands allows the user to control the parameters of the SHINE command
for surfaces. These settings hold per surface type. That is, all Computational surfaces
have to have the same SHINE settings.

Note: This command will not take effect until a refresh is performed. Therefore, if you
wish this command to take effect before the script is exited, you must use the SELECT
command on the appropriate surface/rake.

SIZE
SIZE width height

The SIZE command resizes the graphics window to the specified width and height,
which are required arguments with values in pixel dimensions. This is similar to the -
size=WIDTHxHEIGHT command-line argument (See Chapter 1 of the User’s Guide)
which can be used when starting FieldView. This command will allow you to explicitly
control the window size. This script command is meant to compliment the Tools pull-
down menu giving you control over the graphics window size (see Chapter 14 Working
with FieldView).

Warning: Use of the SIZE command during the recording of an animation (i.e., resizing
the graphics window between the RECORD ON and RECORD OFF commands) will not
generate an error, but will produce animation files that will cause problems for players
and converters and is not recommended.

SLEEP
SLEEP number-of-seconds

The SLEEP command causes script execution to be suspended for the specified number
of seconds, which must be a positive integer. Execution resumes automatically as soon
as the specified time elapses.

SPIN
SPIN number-of-steps

The SPIN command will spin the dataset the given number of steps. Each step incre-
ment is equal to 0.1 radians (approximately 5.73 degrees). A nearly complete revolution
is accomplished by the command SPIN 63.

STEP
UNSTEP
STEP operating-system-command
UNSTEP

The STEP command is identical to the SYSTEM command below, except that the operat-
ing system command is executed after every graphics window update. A second STEP
will override the previous STEP command. The UNSTEP command cancels the previous
STEP command (if any).

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 301

Table of ContentsIndex

SWEEP
SWEEP number-of-cycles
SWEEP BOUNCE number-of-cycles
SWEEP DOWN number-of-cycles
SWEEP UP number-of-cycles

The SWEEP commands perform a sweep operation if the current panel is Computational
Surface, Iso-Surface, Coordinate Surface or the current Boundary Surface is sweepable
(included in an XDB that has been generated in Build mode), or an “animate” operation
to be performed if the current panel is Streamlines or Particle Paths. A SWEEP operation
continues until the original surface value has been reached the specified number of
times. For example, if you are performing a SWEEP on a computational surface defined
as J = 5, and the number of cycles is given as 1, then the sweep operation will stop as
soon as J equals 5 again (or the next sweep step would cause J = 5 to be passed
over).

For Streamline restarts, an Animate operation continues until the original particle posi-
tions have been reached the specified number of times. The number of cycles specified
for a sweep or animate must be a positive integer.

If the SWEEP direction is specified with BOUNCE or DOWN or UP, the current sweeping or
animation direction is changed as requested prior to starting the sweep. If the SWEEP
direction is not specified, the current direction is used. A SWEEP direction of BOUNCE is
ignored if the current panel is Streamlines or Particle Paths. The entire SWEEP command
is ignored if the current panel is Point Probe, Titles, 2-D Plots, Surface Plots, Vortex
Cores / Surface Flows or the current Boundary Surface is non-sweepable (not included
in an XDB that has been generated in Build mode).

SWEEP DATASET
SWEEP DATASET number-of-cycles

This script command allows you to sweep through all of the datasets that are currently
loaded into FieldView (as when the Sweep button is pressed interactively).

SWEEP TIME
SWEEP TIME number-of-cycles [skip] [streakline_export_filename]

The SWEEP TIME command is used to animate the results through time, as if the Sweep
button were pressed on the Transient Data Controls. The SWEEP will occur from the cur-
rent position, and will be based on the current beginning and end points on the Transient
panel. Also, the current setting of Loop is used (see additional script command contain-
ing the LOOP format below). If you wish to change these values, you may use the Time
Step or Time Solution commands. The Skip argument will cause that many time steps to
be skipped before the next one is displayed. The streakline_export_filename
argument will create a Particle Path file containing the streakline data. If this argument is

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 302

Table of ContentsIndex

not present but streaklines are exported, FieldView will create a Particle Path file with a
default filename. The file name will have the following naming convention:

streak<loginname>_12Jun99_12_14_29.fvp

where the numbers after the date are Hours_Minutes_Seconds

SWEEP TIME LOOP number-of-cycles number-of-loops [skip] [streak-
line_export_filename]

Either optional argument can be used, but if both are specified, then [skip] must be
first. The relationship between cycles and loops is: SWEEP number-of-cycles cycles
of number-of-loops loops.

Example:

Suppose you have 4 time steps, and the current setting of LOOP on the panel is 2.

SWEEP TIME 2 would produce the following time steps:

1 2 3 4 1' 2' 3' 4' 1 2 3 4 1' 2' 3' 4'
<-----(1st cycle)-----> <-----(2nd cycle)----->

The same result would be obtained by the command: SWEEP TIME LOOP 2 2.

SWEEP TIME LOOP 1 3 would produce the following time steps:

1 2 3 4 1' 2' 3' 4' 1" 2" 3" 4"
<-----------(one cycle)----------->

where N' and N" indicate extended step/times.

Note: With either form of the script command, if the transient sweep is going
to calculate streaklines, number-of-cycles is ignored. The value of LOOP,
whether using the current setting or explicitly specified, takes precedence.
The SWEEP will do only one cycle of loops to ensure the validity of the exported
streakline data.

See also SELECT DATASET for controlling the dataset number that the SWEEP starts on.

SYSTEM
SYSTEM operating-system-command

The SYSTEM command is used to submit commands to the operating system. Every-
thing on the command line, starting with the first non-blank character after the word SYS-
TEM, is sent to the operating system as a command string. This command may be an

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 303

Table of ContentsIndex

executable module or a shell script or any other legally executable operation. Because
this command uses the Unix system call, the command will be executed by a Bourne
shell (/bin/sh). Note: If an error is encountered with a SYSTEM command and Field-
View is running in the background, the process may hang.

TIME
TIME STEP dataset-number current [beginning end]
TIME SOLUTION dataset-number current [beginning end]
TIME SET DELTATIME float-delta-time
TIME SET MERGEDTIMES ON/OFF
TIME SET SEQUENTIAL ON/OFF

The TIME STEP and TIME SOLUTION commands are used to specify a time value for
the specified dataset, and to set a beginning and end time value for use with the SWEEP
TIME command. Setting a TIME STEP or TIME SOLUTION is identical to changing the
time value on the Transient Data Control panel and pressing the Apply button. The TIME
SET DELTATIME command allows you to specify the delta time step. The delta time can
be used to sync transient datasets which have no solution time, or to create streaklines
on data which has no solution time. See Use Delta Time in Working with FieldView for
more information about this feature. The TIME SET MERGEDTIMES command lets you
create a merged time line for multiple transient datasets. When this mode is enabled, a
SWEEP TIME command will sweep through all the transient datasets loaded in the cur-
rent FieldView session. If TIME SET SEQUENTIAL ON is also set, data not corre-
sponding to the current time step will be blanked (made invisible). See Use Merged
Times in Working with FieldView for more information about this feature.

TIMING
TIMING ON
TIMING OFF [string]

The TIMING ON/OFF commands can be used to return timings for a given set of
sequential lines of script. For example, the amount of time used to execute the script
lines which fall between the "TIMING ON" command and the "TIMING OFF Timing
for example commands is" will be reported by the following block of text in the ter-
minal running FieldView.

[Client]: Timing for example commands is: CPU time = 146.61 + 0.93
= 147.54 Elapsed time = 166.91
Page faults = 0 per elapsed sec = 0.00 Swapouts = 0
Context switches: voluntary = 2502 involuntary = 258

Note that the CPU time will be small in comparison to the Elapsed time if a FieldView
server is performing more of the work than the FieldView Client.

WRITE
WRITE [text]

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 304

Table of ContentsIndex

The WRITE command allows the user to print blank lines or quoted strings of text to the
xterm prompt with lower overhead than using the SYSTEM command. With no argu-
ment, the WRITE command produces a blank line. Note: The WRITE command may not
be able to process text strings that contain a dash (-). Also, WRITE commands will not
work if you have put the FieldView process in the background at any time during the cur-
rent session.

XDB_WRITE
XDB_WRITE xdb-filename [THRESHOLD/NOTHRESHOLD] [title-string
[notes-filename]]

This command allows you to create a .xdb file for subsequent viewing within FieldView
or XDBview. Here, xdb-filename refers to the output filename to be used. The title,
as interactively entered in the Viewer XDB Notes, is specified as a string value. The
accompanying notes section can be included by indicating an additional file, with appro-
priate comments.

The optional argument [THRESHOLD/NOTHRESHOLD] toggles "Maintain Thresholded
Surfaces." The keyword THRESHOLD enables thresholded surface export and the key-
word NOTHRESHOLD bypasses thresholded surface export. Omitting this argument is
equivalent to NOTHRESHOLD.

XDB_ENABLE
XDB_ENABLE xdb-filename [THRESHOLD/NOTHRESHOLD] [title-string
[notes-filename]]

This command allows you to create a .xdb file, based on a SWEEP of a surface or tran-
sient dataset, for subsequent viewing within FieldView or XDBview. A subsequent
SWEEP command will write the .xdb file and close it when the SWEEP finishes.

The optional argument [THRESHOLD/NOTHRESHOLD] toggle has the same function
as described for XDB_WRITE, above.

IMPORTANT: The Working with FieldView section Function Selection for XDB
Export describes the location and use of files xdb_vars and root.xfn which are
required to specify the functions to be stored in your XDB extract when using the above
two FVX commands. (Note that boundary variables [FVBND] are unsupported for Struc-
tured data.) For additional information and examples, see Script Support for Viewer
XDB Files in Chapter 14 of Working with FieldView.

Sample Scripts
For all of the sample scripts shown below, the lines:
 RECORD ON filename
 RECORD OFF

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 305

Table of ContentsIndex

..can be inserted at the beginning and the end, respectively, to create an animation file.
See additional options for output file type, etc. in the description of the RECORD ON com-
mand, above.

Changing the View in an Animation
To change from the current view to a new view, the INTERPOLATE script command is
used. The number of frames created will be equal to the number-of-steps in the
INTERPOLATE command. The following example is taken from the start of the F18 script
f18_show.scr found in the demo directory of the FieldView installation:

!..restart initial position/view
RESTART ALL start
SLEEP 5
RESTART TITLES t0
INTERPOLATE 8 view2

Holding View (pausing)
While the SLEEP command will momentarily halt script execution, it is only useful for live
script viewing. If a hold is required for an animation/movie (file), FieldView can create a
number of held frames, each showing the same image. Thus, when played, the movie
will appear to halt. To do this, use the INTERPOLATE command, and interpolate to the
same view as the current view (in the following example, this is defined by
begin_movie.vct) :

RESTART ALL begin_movie
INTERPOLATE 20 begin_movie

Animating Streamlines During View Interpolation
Using the SWEEP command is independent of the INTERPOLATE command; they exe-
cute sequentially during a script. In order to have streamlines SWEEP during a view inter-
polation, a Streamline Restart with the Animate button ON must be saved:

!..restart initial position/view
RESTART ALL begin_movie
!..restart animated streamlines, then interpolate view
RESTART STREAM stream_on
INTERPOLATE 20 view2
!..finished view change - turn off streamline manually
SLEEP 5

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 306

Table of ContentsIndex

Note: Restarting streamlines will recalculate the streamlines, giving the start-
ing position of the rake, which may be different (i.e. different filament positions)
than the position before the stream_off restart is used. This is why the
SLEEP command is used.

Animating Streaklines For Transient Data
Starting with a Complete Restart of the desired visualization with the streamline seeds in
their desired locations, here is how a streakline animation with an image of the last time
step can be created:

RESTART ALL begin-streaklines
SWEEP TIME LOOP 1 4 1 streaklines.fvp
!..save out file to be able to jump to desired time step
!..
RESTART ALL begin-streaklines
RECORD ON streakmovie.avi
SWEEP TIME LOOP 1 4 1
RECORD OFF
!..
TIME STEP 1 48
PRINT GRAPHICS BMP last_time_step.bmp

Integrating Multiple Surfaces
Because the INTEGRATE script command operates on the current surface, the desired
surface must first be made current using the SELECT script command. Note also that
only the scalar function associated with the surface (in the surface restart file) can be
integrated. For example, to integrate pressure over the Boundary Surface outlet, a
Boundary Surface restart must first be created that has outlet as one surface with the
function pressure loaded in the Scalar Register. This sample script integrates the sca-
lar register function over several different boundary surfaces:

!..Use restarts to set up functions on boundaries of interest
RESTART ALL integrated_boundaries
!..Integrate Inlets, Outlets
SELECT BOUNDARY 1
INTEGRATE current integral.out
!..change surface, integrate (result is appended to existing file)
SELECT BOUNDARY 2
INTEGRATE current integral.out
!..repeat for each boundary surface
SELECT BOUNDARY n
INTEGRATE current integral.out

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 5 Restart Files and Script Language 307

Table of ContentsIndex

Note: If INTEGRATE is attempted and the current surface has no Scalar Func-
tion defined for it, an error pop-up will be produced.

Integrating Multiple Functions
Only the scalar function associated with the surface in the surface restart file can be inte-
grated. In order to integrate more than one function over the same Boundary Surface
(outlet, for example), one Boundary Surface restart must be created that has the sur-
face outlet with one function (pressure, for example) loaded in the Scalar Register,
and a second restart with a different function (density, for example) loaded in the Sca-
lar Register. This sample script integrates different functions over the same boundary
surface:

!..Use restarts to set up functions on boundary of interest
RESTART ALL integrate_start
!..restart boundary restart with "pressure" loaded
RESTART BOUNDARY outlet_pressure
INTEGRATE current integral_outlet_pressure.output
!..restart boundary restart with "density" loaded
RESTART BOUNDARY outlet_density
INTEGRATE current integral_outlet_density.output

Note: If INTEGRATE is attempted and the current surface has no Scalar Func-
tion defined for it, an error pop-up will be produced.

Automating the creation of a Sampled Dataset
A simple script example to read a restart and create a sampled dataset is shown below:

! Read a tet mesh dataset followed by a hex mesh
RESTART ALL tet_then_hex

! Choose the second [hex] dataset as the Grid Target
SELECT DATASET 2

! Choose the [tet] dataset as the Results Target, and
! create a sampled dataset called tet_2_hex
DATASET_SAMPLING 1 tet_2_hex

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 308

Table of ContentsIndex

Chapter 6

Animation

Introduction
A simple animations can be created in FieldView using the Flipbook Controls panel and manually
sweeping a surface or rake. The FieldView script language (along with restarts) can be used to
sweep transient data, surfaces, rakes or interpolate from one view to another. These animations have
the advantage of being extremely simple to create but lack the advantage of flexibility.

Keyframe animation is a more advanced tool that is used to create animations in FieldView. These
animations can be simple (the same as or similar to those created with scripts) or they can be very
advanced, allowing for exploding views, multiple surface and dataset sweeping, surface fade-in’s and
fade-out’s. Keyframe animations have the advantages of flexibility and extreme control over all
aspects of the animation and the disadvantages of needing more up-front planning.

Important Note: The abilities that keyframe animation adds to the animation capability of
FieldView are such that animations often require planning. The animation steps should be
thought through. The steps within the creation of a keyframe animation will often need to be
done in a certain order, or the result will not be what was expected. A keyframe restart
should be saved often during animation creation so that you can recover the animation at

various stages.

There are several features in FieldView that complement the creation of simple and keyframe anima-
tions. These include specific mouse controls that allow you to create needed spatial transforms, a tool
that lets you control the image size and format of your animation, and features that allow you to detach
surfaces and regions from the view hierarchy.

Flipbook Animation and Keyframe Animation are covered in detail in subsections of this chapter.

Animation examples using the FieldView script language are provided in the Sample Scripts section of
this section including a special way to animate (interpolate) the view while streamlines are animating
(see “Animating Streamlines During View Interpolation” on page 305.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 309

Table of ContentsIndex

Flipbook Animation
Select the Flipbook Build Mode option from the Tools pull-down menu (see Figure 115) to turn the
mode on and create a simple flipbook animation from the entire contents of the graphics window
including multi-window layouts (Graphics) or the current window only (Window).

The Flipbook Size Warning panel (see Figure 116) that comes up can be dismissed by clicking OK;
refer to Graphics Layout Size in Working with FieldView for more information.

 Figure 115 Tools Pull-Down Menu

Selecting the Flipbook Build
Mode option will turn on this
mode as well as change the
Sweep and Animate buttons on
other panels to Build buttons.
See the text accompanying this
figure for more information.

Selecting Keyframe Animation...
will bring up the Keyframe Anima-
tion panel. This is explained fully
in the Keyframe Animation sec-
tion.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 310

Table of ContentsIndex

In Flipbook Build Mode, the Sweep or Animate buttons on all FieldView surface and rake panels
become Build buttons. Specifically, the Sweep button on the Computational, Coordinate and Iso-Sur-
face panels becomes a Build button, allowing you to easily create an animated surface sweep. The
Animate button on the Streamlines and Particle Paths panels becomes a Build button allowing you to
create an animated rake. And, the Sweep button on the Transient Data Controls panel becomes a
Build button allowing you to easily create animated transient data. If multiple datasets are loaded, the
Sweep button on the Dataset Controls panel will change to Build. This function is used to alternately
display the datasets (Visibility will be cycled for each dataset in memory).

Note that this form of animation only allows you to animate one object at a time.

Click the Build button on the desired panel.

Controlling the Sweep Extent and Step Control
For surfaces and transient data, the number of frames that will be created for the animation will be
equal to the value of Steps. For surfaces, this is the number of increments used to move the surface
from the current Min value to the current Max value. Either or both of the Min and Max values can be
adjusted by moving the sliders or by editing the Min and Max fields. This can be particularly useful
when the region of interest in the dataset is of limited extent. Specific examples will be shown in the
Examples section describing how to control the extent of the sweep process.

Building a Flipbook Animation
After the Build button is clicked (or, from the Keyframe Animation panel, the Build Flipbook button
clicked and the Flipbook Size Warning panel (see Figure 116) dismissed), the Building Flipbook popup
reports progress as the animation is created in memory. When done, the Flipbook Controls panel (see
Figure 117) comes up and can be used to play the animation or save it to a file.

 Figure 116 Flipbook Size Warning Panel

Refer to Graphics Layout
Size in Working with Fiel-
dView for window size
information.

Click OK to dismiss
this panel.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 311

Table of ContentsIndex

Control and Playback of Animations
Once a flipbook (simple or keyframe animation) has been built, the FieldView graphics window
becomes a ‘playback’ window. Until the flipbook has been saved or deleted, no interactive use of the
graphics window is possible. Only after the Flipbook Controls panel is Closed will the graphics window
return to its normal interactive mode.

While the graphics window acts as a playback window, you can control the range of frames that are
played, the Playback Speed, and the Inc. Click the Speed button to bring up the Minimum Time
Between Frames panel and increase the setting from 0 (zero) to slow down the flipbook playback in
FieldView. Note that there is no dependency between this setting and the frame rate used for video
export. An Inc value of 1 will cause all frames to play, an Inc of 2 causes every other frame to play, etc.

Output Formats
By default, a flipbook is saved as an MP4 file (see Figure 118 below), which is the recommended
video format. MP4 is a state of the art video format supporting up to Ultra High Definition resolution.
MP4 videos will be encoded to H.264, complying with the video compatibility recommendations from
many applications, including YouTube and Microsoft for PowerPoint 2013 and later (note that for older
versions of Power Point, Microsoft recommends installing QuickTime). The H.264 codec has a quality

Once the flipbook is built, the play-
back speed may be too fast; to slow
it down, click the Speed button and
increase the Minimum Time
Between Frames. Frame Rate (fps)
applies only when saving a flipbook
in MP4 format; the default, 15
(frames per second), may be
adjusted to any integer from 1 to 60.

Once a flipbook has been created,
turning on the Play / Pause button
will continue to play the flipbook until
the button is turned to Pause. Note:
All other panels will be disabled
while a flipbook is playing.

Pressing the Save button will bring up a
browser giving you format options and
allowing you to choose a directory in
which to save the file. See Figure 118
below. The frames from Min to Max will
be saved.

Pressing the Close button
will erase the current flip-
book from memory.

 Figure 117 Flipbook Controls Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 312

Table of ContentsIndex

adjustment referred to as the Constant Rate Factor (CRF). This value may be specified with the envi-
ronment variable

FV_MP4_COMPRESSION_FACTOR

where this is assigned an integer value from 0 to 51. A value of 0 will produce a lossless compression
of the original image content at the expense of a large file size. A value of 51 will produce a highly
compressed and probably low quality rendition of the original image content but with a drastically
smaller file size. A default value of 23 has been chosen to be a good balance of fidelity vs. file size. A
"sane" range of 18 for the highest quality and 28 for the smallest file size is recommended.

The "Frame Rate (fps)" entry on the Flipbook Controls panel (see Figure 117) lets you adjust the
default MP4 frame rate of 15 frames per second to any integer between 1 and 60, inclusive. Note that
this entry is not supported for other video formats. Selecting a non-MP4 file type will bring up a warn-
ing that Frame Rate will be ignored.

 Note that Tools.. Graphics Layout Size (or interactively resizing your main FieldView window) can be
used to select the image size prior to saving images or animations. See Graphics Layout Size in
Working with FieldView for more information.

In Windows, animations can also be saved in AVI format. To use the high quality option with AVI files,
set the following environment variable to any value:

 Figure 118 Flipbook File Save Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 313

Table of ContentsIndex

FV_HQ_AV

Alternatively, each frame of a flipbook may be saved as an individual file in PNG, JPEG, BMP or TIFF
format. Specify a base file name in the Flipbook File Save panel. A one-based frame number will be
appended to the base name for the individual frame file names. These numbers are displayed as 4
places with leading zero padding.

Examples
Example:
An X Coordinate surface was created. Only the salient portion of the panel is shown in Figure 119.
The Min value is set to -5500 and the Max value is set to 5500. The value of Steps is set to the
default of 25, so the surface will sweep from -5500 to 5500 in 25 equal steps. Note also that the
Sweep button has been replaced with a Build button. This is because Flipbook Build Mode has been
turned on. To create this 25 frame animated surface sweep, merely press the Build button.

Example:
A streamline rake was created. Only the salient portion of the Streamlines panel is shown in Figure
120. The number of frames created depends on the streamline type. Some streamline types cannot
be animated (Complete and Ribbons), some only create 10 frame animations because they can be
looped (Filament, Spheres, Line of Spheres and Line of Dots) and others create the same number of

The outer left and right arrows allow you to control
the direction of the sweep. The right arrow is used
to sweep forwards and the left arrow to sweep
backwards.

 Figure 119 Surface Sweep Extent and Step Control

When Flipbook Build Mode is on, all Visualization Panels that contain a
Sweep/Animate button will have that button replaced by a button that
says Build. When the Build button on any panel is pressed, the surface
(or streamlines) will be swept one time from the current setting, with all of
the frames from the sweep or animation cycle saved in a flipbook.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 314

Table of ContentsIndex

frames as the value of Div, which is 25 in this example (Growing, Spheres & Lines). Note also that the
Animate button has been replaced with a Build button. This is because Flipbook Build Mode has been
turned on. To create animated streamlines, merely click the Build button.
.

Example:
A transient dataset has been read in and the Transient Data Controls panel is shown in Figure 121.
The Sweep button has been replaced with a Build button. This is because Flipbook Build Mode has
been turned on. To create an animation of the current visualization for this transient dataset, merely
click the Build button.

The Skip and Loop controls are covered in the Chapter 6 section on Streaklines in Working with
FieldView. Please refer to that chapter for details of these two controls. A Skip value of 1 means that
every time step will be read-in, a value of 2 means only every other time step will be read-in, etc. The
Loop value is the number of times the transient sequence (defined by the values of Begin and End) will
be read. A Loop value of 1 means read from the Begin time step to the End time step once. A Loop
value of 2 means read through the sequence twice, etc.

 Figure 120 Streamline Build Control

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 315

Table of ContentsIndex

Example:
Three datasets have been read into FieldView, the second and third with the Append data input button
turned on. The data has been visualized and you wish to Sweep them, saving the results into an ani-
mation file. When Dataset Sweeping is performed, FieldView will toggle the Visibility of each of the
datasets off in turn, so that only one dataset at a time is visible. The Sweep button can be found at the
top of the Dataset Controls panel, only a portion of which is shown in Figure 122 below. Note that the
Sweep button has been replaced with a Build button. This is because Flipbook Build Mode has been
turned on. To create an animation of the sweeping datasets, merely click the Build button.

 Figure 121 Transient Data Controls Panel in Flipbook Build Mode

 Figure 122 Dataset Control Sweep

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 316

Table of ContentsIndex

Keyframe Animation
Keyframe Animation allows for more complete control of the animation process. With a flipbook ani-
mation, for example, you can easily sweep a surface or animate a rake, but nothing else. With a Key-
frame animation, while you are sweeping the surface you can be clipping the sides, turning on the
visibility of a parallel surface showing a different scalar (and then sweeping them simultaneously), then
change them to geometric colored then fade them out while rotating the view. However, you can also
create a simple sweep or spin Keyframe animation with just a few steps. Because of this potential to
be complex, it is recommended that you plan out your keyframe animations, including what you want
to accomplish, before you start creating them.

A keyframe animation consists of tracks of keyframes and actions. Tracks exist for each dataset,
region, surface, etc. Keyframes are user-created and attached to a given object’s track. They summa-
rize what happens and when to datasets, regions, surfaces and rakes. Actions are used to specify the
‘what’ and the keyframe location on the track is used to specify the ‘when’. Other things also have
tracks associated with them. For instance, to rotate all of the datasets on the screen at the same time,
a track can be created for the ‘World’ level within the FieldView hierarchy. Tracks can also be made
for Streamline and Particle Path display and Lights.

Keyframe animation is accessed using the Keyframe Animation panel (see Figure 123) from the Tools
pull-down on the Main Menu. This panel, shown and explained below, provides access to virtually all
properties of FieldView that are normally available through the interface. Therefore, with this one
panel you will be accessing all of the normal surface and rake properties (DISPLAY TYPE, SURFACE
TYPE, Visibility, Thresholding, etc.) that you are familiar with.

There is Script and Restart support for launching and saving a keyframe animation. The script com-
mand, KEYFRAME, is described in Chapter 5 of this Reference Manual. In addition, a Keyframe
Restart file will save your keyframe animation for future use in a similar way that the other FieldView
restarts do. If you Close the Keyframe Animation panel, you will be prompted to save a Keyframe
Restart. The Keyframe Restart is much like a Complete Restart in that it requires FieldView to re-read
the data as well. Therefore, if you wish to work on the animation at a later time (whether during the
same FieldView session or not), you will need to Open the Keyframe Restart. This will load the ani-
mation and perform a Complete Restart, including reading in the data, even if the same data is cur-
rently in memory. If you do not wish to replace the data in memory, you can use the No Data Read
option, which will restore all but the Dataset Restart. Important differences in operation compared to
other FieldView restarts are described in the Keyframe Restarts section below.

Examples with step-by-step instructions showing you how to create keyframe animations for several
different applications are intended to serve as a basis for creating keyframe animations of your own.
Refer to the User's Guide for:

Basic Aerospace Tutorial Step 10: Create a Keyframe Animation
Feature Extraction Tutorial Step 5: Create a Keyframe Animation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 317

Table of ContentsIndex

Keyframe Actions
Keyframe actions fall into 3 classes. In this section we will examine each class in turn, list the actions
that fall in each particular class and give simple examples describing actions and their effects on the
animation.

Note that anything set by a keyframe will update the visualization and the appropriate panel. For
example, suppose that a Complete Restart is read which has a Coordinate surface with its Visibility on,
and you create a keyframe which turns off the Visibility. The Visibility of the Coordinate surface will be
turned off in the graphics window. If that keyframe is then subsequently deleted, the Visibility of the
Coordinate surface will remain off. It will not revert to its original state, but reflect its most recent set-
ting.

Similarly, changing a setting on the panel instead of with the Keyframe Animation panel is permitted
during keyframe specification mode (creating keyframes). However, please note that changes to sur-
faces using the panel may invalidate keyframe specifications. For example, if a keyframe is created
which animates subsetting for J and K of an I=5 Computational surface, this keyframe would become
invalid if the I=5 surface was changed to a J surface using the Computational Surface panel.

The available keyframe actions will be grouped according to keyframe action class. Keep in mind that
not all keyframe actions are available for all track entities. For example, only Visibility and Transforma-
tion are available for Arrows (Titles), whereas surface entities allow most of the actions.

Simple Actions
The simplest action to set for a keyframe, this type allows you to create an animation with a single key-
frame. These keyframe parameters affect the display on that frame number and after (sometimes for a
specific duration), unless the duration is reached, or if the setting is changed by another keyframe
later.

Example: Spin the World

1. Select the World TRACK.
2. Set the Current Frame to 1.
3. Press the KEYFRAME Create button.
4. Change the Spin pull-down from Off to On.
5. Press the Play button.

This keyframe animation will cause the World to spin once around the default World axis (Y), taking the
default number of Steps of 120 (this functions differently than the SPIN script command found in
Chapter 5 of this Reference Manual). Note: Turning On Spin will set a Transformation at the same

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 318

Table of ContentsIndex

frame number. Turning Off Spin will do the same. This is done to correctly remember the initial orien-
tation and to avoid confusing interactions between spin and transformations.

Example: Sweep a Surface

1. Select the desired surface TRACK.
2. Set the Current Frame to 1.
3. Press the KEYFRAME Create button.
4. Change the Current Value Sweep from Off to Up.

This last step will turn on the Current Value Sweep button. This keyframe animation will sweep the
surface starting at Frame 1 and will continue until the Current Value Sweep is changed to Off by setting
another keyframe.

Interpolated Actions
Interpolated actions use at least two keyframes to set a start and end condition for a track; more than
two keyframes form an interpolation path. The smooth interpolation between the start and the end is
done internally by FieldView. The number of steps of the interpolation will be determined by the key-
frame locations.

Example: Create a Moving View of the Model

1. Select the World TRACK.
2. Set the Current Frame to 1.
3. Press the KEYFRAME Create button.
4. Turn on the Transformation button (this step is required to set the initial view).
5. Change the Current Frame to 20.
6. Press the KEYFRAME Create button.
7. Using the mouse controls, move the model to the desired position.

This last step will turn the Transformation button on and define the final position. When the keyframe
animation is played, FieldView will smoothly interpolate between the initial and the final views. It will
not retrace the path you took to get to the final position. You can therefore use as many mouse actions
to get just the right final view without worrying that FieldView is ‘capturing’ your every movement. If

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 319

Table of ContentsIndex

you want to have your model trace a particular path from one view to another, you need to create mul-
tiple Transformation keyframes, which will act as ‘control points’ to guide the interpolation along.

Note: If only one Interpolated Action is set, then this will set the same state for the entire
animation. Only by creating a second Interpolated Action of the same type do you provide
sufficient information for interpolation.

Attribute Actions
Attribute Actions make a change to the attribute of a track. These keyframe parameters affect the dis-
play for the entire animation, unless the setting is changed by another keyframe later or earlier. No
interpolation will occur.

Example: Change a Mesh Surface to a Constant Shaded Surface

1. Select a surface TRACK.
2. Set the Current Frame to 10.
3. Press the KEYFRAME Create button.
4. Turn on the Display Type button and set the value to Mesh (if not set already).
5. Change the Current Frame to 20.
6. Press the KEYFRAME Create button.
7. Change the Display Type value from Mesh to Constant Shading.

This last action will turn on the Display Type button. When this animation is played, the surface will be
shown as a Mesh surface from frames 1 to 19 (there is no other Display Type set at frames earlier
than 10, so they will display Mesh as well). At frame 20, the surface will change to Constant Shading
and remain this Display Type unless changed by setting another Display Type keyframe for this track
later.

Note: In this example, the Display Type Mesh keyframe could be created on any frame from
1 to 19 with exactly the same result, since this is an Attribute Action type.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 320

Table of ContentsIndex

Keyframe Animation Panel
Also shown is the length of the anima-
tion and access to the Time Line display
panel. The Length is a type-in field that
you can use to change the default
length of 120.

This section is used to Create a new keyframe animation (which
will delete any existing keyframe animation, if present), Open an
existing animation (this will perform a Complete restart, or a Com-
plete, No Data Read restart - see below), Clear the animation in
memory, or Save the animation (and associated restart files).

This section shows the current Track. The Clear button
will delete all keyframes on the current track. The
Select… button allows you to change the current track
through the Track Selection panel (see below). Selecting
different types of entities may change the Object: setting
on the Transform Controls panel. See below for more
details.

This Create button allows you to add a keyframe to the
animation. It is used to create keyframes once an anima-
tion has been created or opened.
The Delete button allows you to delete the current key-
frame.
Shown on the right is the Total number of Keyframes for
the current track, the Index Number and the Frame Num-
ber (location) of the keyframe in the animation.
See Figure 124 for a complete description of this section.

This section provides access to virtually all panel settings.
It shows all attributes that can be adjusted or changed for
a given keyframe. If there is no keyframe for the current
frame, then this section will be entirely grayed out. The
contents of this section varies depending on the type of
track currently loaded. The initial value of most fields will
reflect values found on the panel in question.
The Set… button allows you to set the parameter value
(which can also be done by editing the field to the left of
the button), and see the parameters’ current minimum and
maximum (see below).

The sliders and type-in fields can be used to set the Cur-
rent Frame and the Min: and Max: values (to shorten the
range over which the animation is played). Speed allows
you to increase the Minimum Time Between Frames for
slower playback. Inc allows you to skip frames for faster
playback. The Play button allows you to preview the ani-
mation before saving it.

Press the Build Flipbook
button to save an anima-
tion file (see Building a
Flipbook Animation).

The Stay Demoted button will
display the animation with
the current demotion setting
(for faster playback). See
Viewer Options > Viewer
Demote: Pull-Down for

 Figure 123 Keyframe Animation Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 321

Table of ContentsIndex

Due to the importance of the KEYFRAME section of the Keyframe Animation panel, it has been sin-
gled out for explanation below. Here we emphasize the importance of differentiating this Create button
with the Create button at the top of the Keyframe Animation panel. We also discuss the interaction of
the Index Number and Frame Number plus (+) and minus (-) signs with the Current Frame field and
parameter information displayed.

The Create button will create a new keyframe for the current track at the frame number designated by
the Current Frame field. This will cause the Total Keyframe count to increase by one. If a keyframe is
created before any existing keyframes, then the successive keyframes will be renumbered. For exam-
ple, if Keyframe 1 exists at Frame 1 and Keyframe 2 exists at Frame 40, then creating a new keyframe
at Frame 20 will cause Keyframe 2 to be renumbered to 3. Whenever keyframes are deleted, moved
beyond existing keyframes, or added, the keyframes will be sorted and renumbered in order of
ascending frame number (time). Creating a keyframe at a frame where a keyframe already exists for
the track is permitted. If such keyframes make conflicting specifications for one or more parameters, a
warning will be issued and the keyframe with the higher number (which will be the newest keyframe),
will prevail.

Note: Surfaces, Rakes, Annotation, etc. can be created at any time with the normal Field-
View interface during keyframing. You need not rely on every desired element being pres-
ent before starting the keyframe animation process. Anything new added will be added to
the list of tracks available for selection through the Keyframe Animation panel.

The Frame Number shows the frame location of the keyframe indicated by the Index Number. If you
decide that an action is occurring too early or too late, you can move the keyframe location simply by

 Figure 124 Keyframe Animation Panel Create Action

This display-only field shows the total num-
ber of keyframes that have been created for
the current track.

Index Number + and - allow you to
change between keyframes for the
current track. You can also highlight
and type-in the desired index. The
Frame Number and panel will update
showing the frame location of the
index number.

Frame Number + and - allow you to
change the location of the keyframes
for the current track. In this example,
clicking + (the plus sign) will cause
Keyframe 3 to move from Frame 54
to Frame 55. If this is not desired,
merely click - (the minus sign) to
move it back to its original position.

This Create button is used to add a keyframe to the current
track. The frame at which the keyframe will be added is ini-
tially the same as the Current Frame. If a keyframe already
exists at the current frame for the current track, a Warning
pop-up will be issued informing you of this.

The Delete button will delete the current keyframe shown by
the Index Number.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 322

Table of ContentsIndex

clicking the plus or minus sign (+ or -) to the right of the Frame Number setting. You do not have to
delete the keyframe and recreate it at the new position.

Important Note: If the Frame Number does not match the Current Frame, then the parame-
ter fields, buttons and pull-downs will be grayed out, even if there is a keyframe for the cur-
rent track at the Current Frame value. The fields on the Keyframe Animation panel will,
however, show proper parameter values. In this specific case, the values may be the result
of interpolation between two set keyframes. In the above example, if Index 2 is at Frame

20, moving the Current Frame slider to 20 will not display the keyframe information. However, clicking
the Index Number minus sign (-) to move to Index 2 will show the proper, active parameters for Frame
20. Be careful not to use the Frame Number + or - or you will move the keyframe location. If this
occurs, merely use the opposite sign to move it back to its original location.

Note: Surface, Streamline and Particle Path tracks can be accessed by “quick-picking” (double-click-
ing) the surface, rake, etc. in the graphics window. The appropriate track will then be shown as if it
were selected using the Keyframe Track Selection panel.

Keyframe Track Selection Panel
The Keyframe Track Selection panel (Figure 125) shows the current objects available on which key-
frames may be specified. All datasets, surfaces and rakes are numbered showing their dataset value
and the surface/rake number. The surface/rake numbers reflect those that appear at the top of each of
the surface and rake panels (Coordinate, Streamlines, etc.). Notation for Computational surfaces will
also include their grid number, as well as the dataset number.

If a track contains keyframes then the “>” symbol indicates that a track has one or more keyframes
associated with it, and the number of keyframes is indicated to the right of the track name.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 323

Table of ContentsIndex

Note: Selecting a track may cause the current Object: setting on the Viewer Toolbar to
change. This is done to make it easier to perform transformation actions on the track entity.
If the track consists of a surface (Computational, Coordinate, Boundary or Iso-Surface), then
the Object: setting will change to Surface. If a track is Light, then Object: will change to
Light. If the track is a Title, then Object: will change to Title. If the track entity is a rake

(Streamline or Particle Path), since they are not themselves transformable, the Object: setting will
change to Legend, since rakes can have legends. If the track entity is a Legend, the Object: setting
will not change because Legends can be connected to surfaces. You will have to manually change it
to Legend to perform a legend transformation.

The Keyframe Value Specification panel (Figure 126) is brought up when the Set… buttons on the
Keyframe Animation panel are pressed. It allows you to view and change the current value of a partic-
ular parameter. Figure 126 shows that the X Min value of the current keyframe is 3. Note that the
slider is not at its left-most position. There are three reasons why this may be: i) the X Min value on the
panel was changed before this keyframe was created, and this panel is merely reflecting this change,
ii) the Set… button was pressed after the value was set by editing the field of this parameter on the
Keyframe Animation panel, or iii) this keyframe is showing an intermediate step between two other
keyframes, caused by interpolation (one before the current keyframe, or one later) where the X Min

By highlighting one of the
tracks and pressing OK (or
double-clicking), the track is
loaded into the Keyframe Ani-
mation panel. From there, a
keyframe can be added, edited
or deleted for the selected
track.

 Figure 125 Keyframe Track Selection Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 324

Table of ContentsIndex

value changes. In the example shown in Figure 126 below, the value of X Min is 3 because the
value of X Min had been adjusted on the surface panel before a keyframe was created.

Streamlines
There are two different streamline tracks. Those settings (Visibility, Coloring, Scalar Min/Max and Leg-
end information) are available per rake and different settings can be used for each rake. However,
some Streamline parameters are global in FieldView. These global parameters are set by using the
Streamline_Display track. These settings include whether the rakes are animated and the animation
direction, the Divs value, Cycle Length and Display Type.

Keyframe Time Line
This is a 1-D graphical representation of the keyframe animation. A single horizontal line is shown for
each track with symbols showing the location of the related keyframes. The length of the time line will
be equal to the length of the highest numbered keyframe that has been selected using the Keyframe
Time Line Track Selection panel (Figure 127). The symbol locations will be dictated by the frame
number of each keyframe. That is, all keyframes at Frame 30 will line up vertically. An example of a
time line as seen in the Time Line panel is shown in Figure 128 below.

The slider allows you to adjust the value of
the current parameter, and also shows its
current value. It also shows the extent this
value can be adjusted. The min and max
values on this panel reflect the current min/
max range available.

This is a type-in and display field showing
the current value of the parameter.

 Figure 126 Keyframe Value Specification Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 325

Table of ContentsIndex

The Keyframe Time Line Display (Figure 128) will graphically show the selected tracks that have key-
frames associated with them as well as the location of the keyframes plotted as horizontal axes. Each
track that has a keyframe will produce a time line in the window. An “” symbol shows the location of a
keyframe with the keyframe position noted numerically below it. An “” symbol indicates two or more
keyframes at the same location. The lack of an axis for a given track indicates a single keyframe. Two
or more keyframes will be joined by the horizontal axis.

The spacing of the keyframe annotation is determined by the current selection set. The panel can be
manually resized, but is not refreshed when resized.

Individual tracks can be
deselected or selected by
clicking on them with the
left mouse button. Press
OK when finished.

Pressing Select All will
highlight all of the tracks
for plotting. This is the
default when the Display
Time Line button is
pressed. Pressing Dese-
lect All will turn off all
tracks.

Pressing OK will bring up the Time Line panel showing
all of the selected tracks. Cancel will close the panel.

 Figure 127 Keyframe Time Line Track Selection Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 326

Table of ContentsIndex

Keyframe Restarts
The Open and Save buttons on the Keyframe Animation panel allow you to load and store keyframe
animations. However, the Keyframe Restart operates differently than other FieldView restarts. These
differences are explained in this section.

A Keyframe Restart functions more like a Complete Restart than an individual surface/rake/view/etc.
restart. When a Keyframe Restart is saved, FieldView will store the information needed to recreate
the keyframe animation in a *.key file. However, it will also store the information needed to recreate
the visualization in a Complete Restart, meaning that any necessary files (*.dat, *.vct, *.map, etc.)
will be created as well. This set of files will follow a unique file naming convention. Suppose the Com-
plete Restart used to create the visualization from which to work is called start (i.e., the restart files
are start.dat, start.vct, etc.) and the keyframe restart is given the same filename prefix of
start. Then the Keyframe Restart file will be called start.key, and the associated Complete
Restart files will be given the prefix start_key by FieldView, and be named start_key.dat,
start_key.vct, etc. This is to avoid the possibility of overwriting the initial Complete Restart used
to start the process.

If you read the Complete Restart start_key with the Restart Files pull-down hypothetically created in
the paragraph above, you will get the starting visualization but without the keyframe information.
Instead, you should Open the Keyframe Restart, start, which will then read the Complete Restart
start_key and load the keyframe information contained in the *.key file. That is, a Keyframe

 Figure 128 Keyframe Time Line Display

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 327

Table of ContentsIndex

Restart should only be read on the Keyframe Animation panel. This will replace the data, all visualiza-
tion and the keyframe currently in memory. To restart just the keyframe animation, press the No Data
Read button. This will act the same as the Complete, No Data Read restart in that the data files will
not be re-read.

Keyframe Restarts can be saved at any time during the process of creating a keyframe animation.
Choosing the same Keyframe Restart filename as already exists will overwrite the files, similar to other
types of restarts. We recommend that you save your work often.

There is script support for a Keyframe Restart. This is described in the previous chapter. This will
allow you to run a keyframe animation from a script. Batch mode also supports the keyframe restart,
so a keyframe animation can be made in this fashion. The script command accepts optional “start
frame”, “end frame” and “frame increment” arguments. Using multiple “keyframe” script commands in
a single script will allow you to assemble separate animation scenes into a complex whole.

Like other FieldView restart files, the Keyframe Restart is a simple ASCII file. While this file can be
edited, it is not meant to be edited. Like a script (see the previous chapter), comments can be added
to a Keyframe Restart file. Any line beginning with a “!” character will be ignored. However, if the
*.key file is overwritten, all comments will be lost.

Warning: If you have a keyframe animation created, but then read in a Complete Restart, a warning
pop-up will be issued, as this will delete the current keyframe animation.

Note: If a Complete Restart is saved at any time during keyframing (as opposed to a Key-
frame Restart), you will save the current visualization state of the graphics window, with the
exception that any “fade” value (due to a Fade-In/Out setting) will be ignored, and all faded
objects will be completely visible. To save a transparency value, it must be set via the
Transparency field in the keyframer or on the surface panel.

Why do I get a perspective viewing warning every time I create a new keyframe animation?
The following warning pop-up is issued when a keyframe animation is created with Perspective off:

 Figure 129 Keyframe Animation Perspective Warning

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 328

Table of ContentsIndex

While creating an animation with perspective off is allowed, normally, perspective will need to be on to
perform fly-by’s, fly-through’s, and other camera motions that can be performed with the keyframe ani-
mator.

What happens if I delete the surface, rake, etc. that has keyframes associated with it?
Deleting a surface (or other entity) for which you have specified keyframes will create ‘orphaned’ key-
frames. In this case, the following warning pop-up will be issued.

Pressing OK will delete the surface, rake, etc. and clear the track of any keyframes associated with it.
Pressing Cancel will keep the track and keyframes intact and also cancel the surface deletion. Delet-
ing a track may cause existing tracks to be renumbered, due to surface renumbering.

Why does my fade-in/out or transparency seem to use integer steps?
Fade-In/Out for surfaces, rakes, and titles (Helvetica only) uses the 9 step preset FieldView transpar-
ency settings [0 (in), 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1 (out)]. Since Fade-In/
Out starts immediately, the default Count is 8. Values of Count used should be multiples of 8. If 16 is
used, then each fade (transparency) value will be held for an additional frame, so that the fade will
happen more slowly. However, no interpolation will be used on transparency values. Using values of
Count that are not multiples of 8 will cause sampling, meaning that some of the frames will be held for
an additional frame, some will not.

Transparency is a Simple action, meaning it sets the transparency for the entire animation unless it is
set again, which will cause interpolation. The interpolation will actually consist of the preset transpar-
ency settings, with additional hold frames inserted if necessary.

Fade-In/Out and Transparency have no effect on mesh surfaces, contour lines, outlines, point or plot
markers, streamlines, particle paths or line-drawn fonts (non-Helvetica).

Why does Set Center of Rotation set from the Defined Views panel have no effect on keyframe trans-
lations?
The Set Center of Rotation only has an effect on the center of rotation during interactive viewing oper-
ations done in the graphics window. It has no effect on keyframe interpolation of successive transfor-

 Figure 130 Keyframe Delete Track Confirmation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 329

Table of ContentsIndex

mations. Consider using a Region file to re-locate the origin of the dataset. Subsequent spins will
occur about this newly defined origin and coordinate system. See Chapter 3 of this Reference Man-
ual for more details on regions.

Why are streaklines not produced from streamline seeds when performing a transient sweep with the
keyframe animator?
Streaklines force specific display settings for streamlines and disable any changes to the transient
panel during the first sweep while a Particle Path file is being built (for use during subsequent sweeps).
Allowing this would unnecessarily complicate the keyframe animation process. In order to display
streaklines with the keyframer, you should pre-calculate them and read them in using the Particle Path
Import feature. Then you can set keyframe parameters for them as particle paths. See Chapter 6 and
Chapter 7 of Working with FieldView for more information about Streaklines and Particle Paths.

Why do my streamlines disappear when I perform a transient sweep with the keyframer?
If a transient sweep is performed with the keyframer then no streamlines will be shown for the current
time step and all successive time steps. A streamline will only be made visible if the time step on
which it was created is the current time step and that time step is not part of a transient sweep per-
formed by the keyframer.

Why is there no Thresholding button available in the Keyframe Animation panel?
A Thresholding button would be redundant in this context. Thresholding can be accomplished by set-
ting the Min: or Max: values to any value other than their defaults. If the Min: is, by default, 0, then set-
ting it to 0.2 will threshold the surface by the function loaded into the Threshold register so that values
between 0 and 0.2 will be excluded.

Error Conditions
Error - line N - char n: Track target not present in currently loaded data-
set
This error message can be produced when reading a Keyframe Restart. It means that there are key-
frame settings for some entity (surface, rake, etc.) which does not exist. This may occur if, for exam-
ple, a Complete Restart is saved (after having changed the entities present) with the same filename as
an already existing Keyframe Restart. For example, a Keyframe Restart might be called start.key
with the accompanying files: start_key.dat, start_key.vct, etc. If you then later save a Com-
plete Restart and call it start_key, you will overwrite the base Keyframe Restart files.

Perspective and Mouse Controls
The default start-up mode for FieldView is for Perspective to be on. Perspective on is required for cer-
tain types of ‘fly-through’ animations, where the (camera) view actually moves through the data space
in a direction perpendicular to the screen. This type of movement is only possible if the view uses Per-
spective, thus allowing FieldView to draw elements “behind” you as well as in front of you.

In order to provide easier access to the Perspective-Z transform, use the spacebar to toggle between
two different states of mouse interaction. This toggle will change the icons of the Transform Control
panel.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 330

Table of ContentsIndex

If the current Object is World, Dataset, Region, Surface or Light (but not Title or Legend) and the cur-
rent Action is Multi-Transform, then an additional set of transform controls can be toggled merely by
pressing the Space Bar on your keyboard. This will change the icons and their behavior to those
shown in Figure 131 below (see also Chapter 14 of Working with FieldView). Pressing the Space
Bar again will return the icons to their previous state.

Note: The toggle mode only functions if the graphics window is the window which has focus.
Depending on your computer settings, the graphics window may need to be clicked to gain
focus. “Quick-picking” (double-clicking) on an object will normally cause the panel that
comes up to have focus. You may need to click on the graphics window to gain focus there
for this feature to work.

Note: The [M3] magnification transform shown in Figure 131 has the effect of scaling the
object. This makes the object look larger in the graphics window. Using the [M3] Z-transla-
tion transform shown in Figure 132 moved you closer to or further from the object, and only
functions when Perspective is on. With the Z-translation transform, you can actually pass

 Figure 131 World/Dataset/Region/Surface Multi-Transform

Depress [M3] for Magnifi-
cation when Object is
World, Scaling when
Object is Dataset.

Depress [M2] for XYZ rota-
tion.

Depress [M1] for com-
bined XY translation (X
translation is horizontal
movement, Y translation
is vertical movement).

 Figure 132 Toggle Multi-Transform Icons

Depress [M3] for Z trans-
lation. This only works
when Perspective is
turned on.

Depress [M2] for Screen Z
rotation.

Click and drag to create
Zoom Box. Action may be
repeated for a total of 10
zooms. To Unzoom, you
must change the Action to
Zoom Box.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 331

Table of ContentsIndex

through an object (surface, etc.). This feature is necessary for fly-through animations. By default, Per-
spective is on when starting FieldView.

Surface and Region Detach
The Detach button on the Viewer Toolbar (see Figure 26) can be used to isolate the current Region or
Surface from the transform hierarchy. This means that once a region/surface is detached it is no lon-
ger affected by subsequent World, Region or Dataset transformations. Regions will not be affected by
World, Dataset or Surface transforms and Surfaces will not be affected by World, Dataset or Region
transforms.

Important Note: Detaching a Region or Surface will cause all interactive and panel trans-
forms for that surface/region to reset. This means that any Dataset transform such as Scal-
ing, Region transforms such as Rotate or Translate (on the respective panels), or any
interactive Dataset or Region transforms done prior to the detach will be undone. This may
cause the surface to move out of view, for instance. Since a detached Surface or Region is

not affected by further World transforms (such as Center), it may be difficult to reset the view to re-
acquire the surface in some instances. Reset will reattach the Region or Surface to the hierarchy.

 Figure 133 Light Multi-Transform

Depress [M2] for the XYZ rotation.

 Figure 134 Light Toggle Multi-Transform

Depress [M2] for screen Z rotation.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 6 Animation 332

Table of ContentsIndex

Note: A detached Region or Surface will be affected by World zooms (using [M3] when the transform
Object is World and Action is Multi-Transform).

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 7 Printing and Saving Images 333

Table of ContentsIndex

Chapter 7

Printing and
Saving
Images

Introduction
The File Save Image pulldown menu has flyouts for saving the entire contents of the
graphics window including multi-window layouts (Graphics), the current graphics window
only (Window) or the 2D plot window (Plot) to a file. To print directly to a PostScript-
compatible printer, use the File Print pulldown. Several file formats are supported and
are illustrated in Figure 135.

Note: The Tools Graphics Layout Size sub-menu provides a way of easily
setting the graphics window sizes for image output. The list offers several
standard image sizes. Choosing one of these predefined sizes will cause the
graphics window to be resized. The ability to resize the graphics window is
redundantly available from View Graphics Layout Size as well.

Note: It is possible to create printouts of the graphics window even if it has
been partially covered by another application or minimized.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 7 Printing and Saving Images 334

Table of ContentsIndex

Note: Be aware that white objects output on white paper will not be visible.

Printing and Saving Images
How do I save my graphics or 2D Plot window to a file?
The File Save Image pulldown menu has flyouts for saving the entire contents of the
graphics window including multi-window layouts (Graphics), the current graphics window
only (Window) or the 2D plot window (Plot) to a file. Several file formats are supported
and are illustrated in Figure 135.

The display in the current window or the entire multi-window layout can be saved to one
of FieldView's supported image file formats. To save the current window, navigate to
File Save Image Window and choose the desired format. To save the entire con-
tents of the graphics window, including all the windows in the layout, navigate to File
Save Image Graphics and choose the desired format. Saving a multi-window image
to a file is illustrated in Figure 136. The graphics window has been split into six win-
dows. View Graphics Layout Options provides control over the multi-window hard-
copy background color and the separator width, both of which affect the rendering of the
spaces between windows in a multi-window rendering. The three windows at left contain
coordinate planes showing three different scalars and have their background color set to

 Figure 135 Save images to file

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 7 Printing and Saving Images 335

Table of ContentsIndex

black. The three windows at right contain embedded plots and have their background
color set to white. In the resulting BMP file, black separators are used to provide space
between the windows.

How can display images or play animations created with FieldView?
FieldView’s output images and animations are suitable for all widely used graphics pro-
grams and players, including ImageMagick’s display and animate utilities, typically
installed with Linux.

What is the difference between Encapsulated PostScript and Auto-Scaling PostScript?
Encapsulated PostScript files are intended for use inside another document. Your docu-
ment preparation program will scale and rotate the image as you instruct it. However,
you can also send an Encapsulated PostScript file directly to the printer. Please note
that these Encapsulated PostScript files do not contain a preview image. As a result, the
image itself will not show up in the document program, but will appear in the final print.

Auto-Scaling PostScript files are intended for stand alone (full-page) output. An Auto-
Scaling PostScript file fills the page as much as possible, while still preserving the
height:width ratio of the image. In addition, it will turn the image 90 degrees (landscape)
if this will produce a larger image.

How can I get my background color in my PostScript prints?
Go to File Postscript Options... On the Postscript Options panel check the Use
White Background with Black Border option. When this button is on (the default)
your background will always be white, and a black border will be drawn around your
print. If you would like the background color in the graphics window to be used in your

 Figure 136 Saving a Multi-Window Image to File

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 7 Printing and Saving Images 336

Table of ContentsIndex

print, turn this button off before pressing one of the print options. Note: This option will
work only for graphics window PostScript prints.

What does the Gray Scale output option do?
If you press the Gray Scale option button on the Postscript Options panel, your print will
come out as gray scale, even on a color printer. This is useful if you will be printing to a
black and white printer, or will be using your print in a report that will be copied on a black
and white copy machine. Prints that are made using the Gray Scale option will also be
substantially faster than color PostScript prints. Note: The Gray Scale option is only
available for the Graphics Window, not the Plot Display.

Can I control the resolution on my PostScript prints?
FieldView is set up to print at high resolution on most standard paper sizes. If you are
printing on very large paper, or if you would like even higher resolution on your printer,
you may set the environment variable: FV_DPI. This variable controls the number of
image pixels per inch that will be calculated (based upon a standard paper size). By
default this value is set equal to 120. Please note that changing this value will not affect
the color banding (amount of colors) on your printout, and will use significantly more
memory. Only change this value if the edges of objects appear jagged on your printout.

Note: The default FV_DPI value of 120 was chosen to give the best overall
performance. If you want to see if increasing this value noticeably improves
image quality, try creating and printing an image at FV_DPI=120 and
FV_DPI=240. If you do not see a significant improvement, then increasing the
DPI setting will not help the output. Side effects of higher FV_DPI values are:

i)more memory required - sometimes significantly higher, ii) move-draw lines will get thin-
ner and thinner. Setting FV_DPI to 600 because your printer is a 600 dpi color printer is
usually incorrect because the colors are ‘dithered’, as described in the next paragraph.
Also, keep in mind that some printers have printing quality settings.

Unless you have a TrueColor printer (e.g. a dye sublimation printer), any colored object
will be dithered when printing. Dithering is the simulation of color gradations by drawing

 Figure 137 Postscript Options panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 7 Printing and Saving Images 337

Table of ContentsIndex

a pattern of different-colored dots. PostScript does not allow scalar-colored (gradually
changing color) move-draw commands, which handle lines, vectors, most text, etc. So if
you have scalar-colored vectors, for example, they are created in the PostScript file by
FieldView as a bitmap. When printed on a non-TrueColor printer, they will be dithered.
If you have a 75 dpi printer, these dithered objects will look worse than on a 300 or 600
dpi printer. However, increasing the DPI of the PostScript file FieldView creates will not
significantly improve the results (on the same printer) unless (as stated above) you need
to print on very large paper.

Do I need to save a file to capture my graphics or 2D plot window?
No. Using Edit Copy, you can paste the contents of either the graphics window or the
2D plot window to the clipboard. The contents of your clipboard can then be pasted
directly into most applications including Microsoft Office and Open Office.

Can I have FieldView print directly to my printer?
In the fv/bin subdirectory, there is a shell script called fv_to_printer.sh.sample.
In order to instruct FieldView to send your file to a postscript compatible printer, you
must edit this shell script and rename it to: fv_to_printer.sh. The best thing to do
is to copy this script to your home directory and edit the file there. You will need the
appropriate permissions to edit the files in fv/bin directory. FieldView will search the
normal path hierarchy, searching your home directory first. The supplied script can be
used to send the contents of your graphics or 2D plot window to any PostScript compati-
ble output device. To enable this, edit the “print file” section of the script according to
your device configuration. An example print command is shown in the script.

FieldView Pixel Resolution
The actual number of pixels used in a PostScript image created by FieldView is calcu-
lated as follows:

 Figure 138 Error message when direct printing is not configured

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 7 Printing and Saving Images 338

Table of ContentsIndex

1. Calculate the ratio of larger dimension of the graphics window to the smaller dimen-
sion. The default graphics window on 1280x1024 PC monitors is nearly square. The
graphics window is 746x734 (width x height). So the default aspect ratio is:

larger/smaller = 746/734 = 1.016

2. The aspect ratio of an 8.5x11 inch sheet of paper is:

larger/smaller = 11/8.5 = 1.294

3a. If the aspect ratio of the graphics window is less than 1.294, then the smaller dimen-
sion of the graphics window is the limiting factor, and it fills the smaller (8.5 inch) dimen-
sion of the page. The number of pixels in the smaller dimension of the image is then:

FV_DPI * 8.5

where FV_DPI defaults to 120 in FieldView. In this case, the larger dimension of the
image will have the pixel count:

FV_DPI * 8.5 * (graphics window aspect ratio)

3b. If the aspect ratio of the graphics window is greater than 1.294, then the larger
dimension of the graphics window is the limiting factor, and it fills the larger (11 inch)
dimension of the page. The number of pixels in the larger dimension of the image is
then:

FV_DPI * 11

where FV_DPI again defaults to 120 in FieldView. In this case, the smaller dimension of
the image will have the pixel count:

FV_DPI * 11 / (graphics window aspect ratio)

FV_DPI can be converted into actual dots per inch and vice versa. If the image is ren-
dered by a PostScript renderer to a size other than 8.5x11 inch paper, the actual “dots
per inch” will be different from FV_DPI. Note that EPS images will not render to different
sizes unless embedded in a parent document - they never resize when printed “stand-
alone”.

Roughly, if the desired image size is 1/3 the size of a piece of paper, then the actual dots
per inch will be 3 times FV_DPI. More exactly, assuming uniform (non-distorted) scaling
of the image, then

1. If the aspect ratio of the graphics window is less than 1.294, the smaller dimension of
the graphics window is the limiting factor. Then the actual “dots per inch” is:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 7 Printing and Saving Images 339

Table of ContentsIndex

FV_DPI * 8.5 / (smaller dimension of final image in inches)

2. If the aspect ratio of the graphics window is greater than 1.294, then the larger dimen-
sion of the graphics window is the limiting factor. Then the actual “dots per inch” is:

FV_DPI * 11 / (larger dimension of final image in inches)

If you know the desired “dots per inch”, you can calculate the necessary FV_DPI by
doing this in reverse:

1. If the aspect ratio of the graphics window is less than 1.294, the necessary value of
FV_DPI is:

FV_DPI = (desired dpi) * (smaller dimension of final image in inches) / 8.5

2. If the aspect ratio of the graphics window is greater than 1.294, then the larger dimen-
sion of the graphics window is the limiting factor. Then the actual “dots per inch” is:

FV_DPI = (desired dpi) * (larger dimension of final image in inches) / 11

Possible Problems
My text appears blocky and gray.
The default color for text is gray (the default Geometry color). Text that is not black can
be rendered in a dithered form and this usually results in a lower quality output. For best
results, set the background color of the screen to white (so it looks like the paper) and
then set your text color to black.

My text disappears when I create a PostScript print.
The default PostScript option does not print the background color. As a result, white text
will be printed on white paper, and will not show up. To fix this problem, you should
change the background color of the screen in FieldView to white (or something other
than black), and change your text color to something other than white (black text tends to
print the best), before creating your PostScript file.

Why do my contour lines and meshes appears jagged?
Black lines are drawn with the best appearance in PostScript. If possible, change line
drawn objects to black.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 7 Printing and Saving Images 340

Table of ContentsIndex

Error Conditions

Window is not visible.
Selecting an icon'ed or absent window will cause the error message popup Window is
not visible, and will not create the PostScript file.

Timeout error
After the PostScript file is printed, if you receive a second page from your printer indicat-
ing a timeout error, this indicates a problem with your print spooler. The spooler is sup-
posed to place an end of job marker (usually a control-D) at the end of each job. If the
printer does not receive this marker, a timeout error will occur. If you are receiving this
error, you will need to have your spooler modified to append the end of job marker when
necessary.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 341

Table of ContentsIndex

Chapter 8

Advanced
Numerical
Functions

This chapter will detail many useful techniques and formulas which can be used with the Function For-
mula Specification panel (“Function Calculator”) to allow users to define quantities and visualize their
data better. Note that the case of the function is irrelevant (i.e. "GRAD" will work as well as "grad").

Vector Quantities
In this section, we will describe how to create unit vectors, surface normals, vectors from scalars, and
how to extract a component of a vector.

Unit Vectors
Unit vectors are: Unitx = [1,0,0], Unity = [0,1,0], Unitz = [0,0,1]

Unitx, Unity and Unitz can be used in the function calculator to compose vector quantities. The
names are not case sensitive. An alternative way to define the unit vectors is to compute gradients:

X direction: [1,0,0] is grad("X") or UnitX (with no quotes)
Y direction: [0,1,0] is grad("Y") or UnitY (with no quotes)
Z direction: [0,0,1] is grad("Z") or UnitZ (with no quotes)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 342

Table of ContentsIndex

Surface Unit Normals
Computational Surfaces:
For a J surface, the gradient of J is normal to the surface (pointing in the direction of increasing J).
Therefore, in the FieldView formula panel, to get a unit normal for a J surface, use:

nrmlz(grad("J"))

where "nrmlz" normalizes the gradient (converts it into unit vectors). Remember this always points
toward increasing J, not necessarily in the direction of flow, so you may need to use:

-nrmlz(grad("J"))

if you are dealing with flow quantities, and the flow is going toward decreasing J.

Iso-Surfaces:
For an Iso-Surface of pressure,

nrmlz(grad("pressure"))

are unit vectors normal to the Iso-Surface. They point in the direction of increasing pressure.

Coordinate Surfaces:
See Unit Vectors above.

Boundary Surface:
The surface normal is not reliably known to FieldView, unless the direction is marked in the PLOT3D
or Unstructured data passed to FieldView. For viscous cases this will usually work:

grad(mag("velocity"))

(The vector function "velocity" may appear different for various reader formats). To see if this is
likely to work create a vector function:

grad(mag("velocity"))

Make this the current vector function, change your surface type to vector and see if these vectors look
like they are correct vector normals.

Create a Vector from a Scalar
Given the scalars: a, b, and/or c, we can convert them to a vector by creating the function:

UnitX*a + UnitY*b + UnitZ*c

Example:
Create a vector function which is the Velocity vector (in m/s) minus a 50 m/s freestream in the X-direc-
tion:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 343

Table of ContentsIndex

"Velocity" - UnitX*50.0

Extract a Component of a Vector
To extract the X component of a vector, in this case "Velocity",

VecX("Velocity")

To result in a vector rather than a scalar,

VecX("Velocity") * UnitX

since UnitX = [1,0,0]

Equal Length Vectors for Two Datasets
FieldView makes the default vector length (1) a certain length in pixels based on the size of the graph-
ics window and the magnitude of the vector used for the vector field. Visualizations of multiple data-
sets in FieldView are independent of each other with respect to available functions, function min/
max’s, etc. This gives you a much greater ability to visualize multiple datasets. However, since the
lengths of the vectors of each dataset will be determined independently of any other datasets in mem-
ory, the vector lengths of the first dataset may appear similar to the vector lengths of the second data-
set, but actually stand for very different velocities.

The lengths of the vectors are determined by the local vector value and overall scaling is set by the
normalization factor for that dataset (discussed below). The method described in this section will show
you how to set the displayed vector lengths so that vectors from different datasets are approximately
the same. That is, for example, a vector with a magnitude of 50 m/s in one dataset is the same length
as a vector of 50 m/s in a second dataset, even though the normalization factors of the two datasets
are not the same.

Important Note: The view of a given dataset affects the size of objects displayed. This
includes scaling factors which, in turn, affect vectors. In order to create equal vector
lengths, the two datasets must have the same view and dataset scaling. You can translate
and rotate, but not zoom. Zooming will change the scale factor.

The way FieldView determines the size of vectors is by normalizing the vector field by the following:

N = |u|max + |v|max + |w|max
where

|| indicates absolute value

max indicates maximum value

Therefore, in order for two datasets to have representatively the same length vectors, N would have
to be the same for both datasets. If this is not the case, you need to scale the vector by adjusting the

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 344

Table of ContentsIndex

Length Scale found in the Vector Options panel. Creating equal length vectors cannot be properly
done by scaling the vector function with the Function Formula Specification panel (CFD Calculator).

Using the first dataset’s vector length as the baseline, the length scale factor for the second dataset
needs to be:

Length Scale = N2 / N1
where

N1 = |u1|max + |v1|max + |w1|max

N2 = |u2|max + |v2|max + |w2|max

Example:
This normalization was performed on two of the datasets provided with FieldView, bluntfin (found
in the fv/examples directory), and the F18 dataset used in the Basic Aerospace Tutorial (Chapter
3 of the User’s Guide, and also in the fv/demo directory):

This gives a value of N2/N1 = 0.21357. Therefore, whatever the Vector Length used for the first
dataset (bluntfin, in this case), the Vector Length used for the second dataset (F18) needs to be
0.21357 times this. The resulting Vector Length Scales used, velocity magnitude, length of displayed
vectors and results were:

Thus we see that for properly scaled vectors, a unit of velocity magnitude will display as (essentially)
the same length vector (within the accuracy of hand length measurement).

Non-Rotating Velocities using Rotating Quantities
If the Velocity Vector found in the results file is defined for a rotating frame of reference, but a non-
rotating frame of reference vector is desired for visualization, this can be done in FieldView using the
Function Formula Specification panel (“CFD Calculator”; see Chapter 2 and Appendix A of this Ref-
erence Manual).

|ui|max |vi|max |wi|max Ni
bluntfin 3.12293 1.88989 2.00529 7.01811
F18 .486598 0.49028 0.522133 1.499011

Vector Length Scale | V | Displayed Length
(mm)

| V | for 1 (mm)

bluntfin 40 2.64544 160 60.48
F18 40*(N2/N1) = 8.5428 0.314374 19 60.44

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 345

Table of ContentsIndex

Note: These formulas assume the vector field is velocity. If the vector is not velocity, differ-
ent formulas are needed.

Note: The inverse conversion, from non-rotating to rotating velocities, is supported in FieldView by
automatically creating the relative velocities. This is described in Chapter 3 of this Reference Manual.

1. Export rotational frame of reference velocity components from the flow solver.
2. Note rotational frame of reference speed, W, [rad/s]
3. Read the grid/results data into FieldView
4. Use the “CFD Calculator” to set up the following functions:

5. Load the new vector "V_noro" into the Vector register. Plotting a surface as vectors will now dis-
play the new non-rotating vector field.

Integral Quantities
In this section, we will describe how to compute line integrals, volume integrals and integrated forces.

omega = , [rad/s] (define as a constant)
Ux_rel = “u-velocity” - “Y” * “omega”
Uy_rel = “v-velocity” - “Y” * “omega”
V_noro = UnitX * “Ux_rel” + UnitY * “Uy_rel” + UnitZ *

“w-velocity

 Figure 139 Rotating (left) and Non-Rotating (right) Vector Fields

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 346

Table of ContentsIndex

Line Integrals
A line integral can be accurately approximated in FieldView by using thresholding. The following
example explains how to integrate along an I=constant line in a 2D dataset. The same kind of
approach works for line integrals in 3D datasets.

Example:
Assuming that your 2D data is in the I & J directions (so K=1), make a K=1 Computational Surface and
scalar color it with the function you want to integrate. Bring up the Function Specification panel and
load up the Threshold register with “I”. Turn on the THRESHOLDING button for the Computational
Surface. Assume you want to integrate I=5. What you need to do is the following:

1. Set Min: on the Threshold slider to 4.99 by typing in this value.
2. Set Max: on the Threshold slider to 5.01 by typing in this value.
3. Bring up the Integration Controls panel. Press the Integrate Current button. Write down “Average

value (integral/area)= NNN.NNNN” number.
4. Set Min: on the Threshold slider to 4.999 by typing in this value.
5. Set Max: on the Threshold slider to 5.001 by typing in this value.
6. Bring up the Integration Controls panel. Press the Integrate Current button. Write down “Average

value (integral/area)= NNN.NNNN” number.
7. Set Min: on the Threshold slider to 4.9999 by typing in this value.
8. Set Max: on the Threshold slider to 5.0001 by typing in this value.
9. Bring up the Integration Controls panel. Press the Integrate Current button. Write down “Average

value (integral/area)= NNN.NNNN” number etc.

The values for “Average value” should be converging. Two things will happen:

1. You will reach the precision of FieldView in the type-in fields.
2. The numbers for “Average value” will stop converging and may start to diverge. When this hap-

pens, go to the last “good” number written down - this is the closest FieldView can come to the cor-
rect value.

Volume Integrals
This section contains information regarding the calculation of the Volume of a region, not necessarily
the volume integral of a Function, which can only be done under special circumstances.

Note: This method's results will depend heavily on the coarseness or fineness of the grid.
Coarse grids will give poorer results and vice versa. Also, this can be used to calculate vol-
umes but not volume integrals. That is, F cannot be varying, but must be a constant func-
tion.

FieldView can calculate some volumes if you use Gauss' divergence theorem. This theorem says that
volume integral of "div(F)" is equal to surface integral of "F dot surface-normal" over the
bounding surface of the volume, where "F" is your function.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 347

Table of ContentsIndex

div(F) is the divergence of F. F must be a vector function. (If Fx is the x-component of F, and
Fy is the y-component of F, and Fz is the z-component of F, then the divergence of F is:

Fx/x + Fy/y + Fz/z

which is a scalar function).

To get a volume integral, you must integrate over the bounding surface (or surfaces) of the volume,
and you must know the surface normals. See the sections above on Unit Vectors and Surface Unit
Normals for descriptions on how to do this.

Note: The surface of the volume must be closed (no gaps, no holes).

You can also use boundary surfaces or Iso-Surfaces to make volumes, and calculate the volume inte-
gral from the boundary surfaces or Iso-Surfaces.

The type of surface does not matter (computational or coordinate or boundary or Iso-Surface). If the
surfaces form a closed volume, then Gauss' divergence theorem is valid.

Example:
We will compute the volume of a sphere created by an Iso-Surface in the dataset bluntfin found in
the examples directory of your FieldView installation.

We need to create the vector function ["X",0,0]. We use this function because the divergence of
["X",0,0] is the scalar constant 1. Recall from the Unit Vectors section above that UnitX is the
same as the vector function [1,0,0]. Therefore, the vector function we need is:

F = ["X",0,0] = "X" * UnitX

For the dataset bluntfin used in this example, the sphere is located at [1.0,3.5,2.5].

formula_restart_version: 1
sphere
sqrt(("X"-1)^2+("Y"-3.5)^2+("Z"-2.5)^2)
F
"X"*UnitX

 F dot N = divF

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 348

Table of ContentsIndex

First, create your isosurface, using the variable sphere as the iso function. Set the Vector Function to

F. For this case, with a radius of 2.5 units, the volume should be (4/3)*()*(2.53) = 65.44985. Field-
View gives approximately 64.2379, (in the Integration RESULTS section, look for the value of Int (V
dot N)), yielding a relative error of a about 1.8%. If you threshold the Iso-Surface with Z and reduce
the maximum value to 2.5 (i.e. only allow the left hemisphere to show), the relative error reduces to
about 1%. This is due to the fact that the bluntfin grid is finer near the plate and coarser the far-
ther away you get. Thus, the right hemisphere (the side with Z > 2.5) is less spherical than the left
hemisphere. The finer the grid, the better the spatial resolution.

Integrated Force
The (pressure) force on a surface or surfaces can be calculated by integrating pressure over the sur-
face(s).

To get the component of this force in a given direction, such as for the purpose of calculating drag or
lift, it is necessary to know the surface normals.

If the user or the solver supplies surface normals N at grid points, then FieldView can integrate (P *
Nx), (P * Ny), and (P * Nz) as separate scalars, where Nx = N dot (1,0,0), Ny = N dot
(0,1,0) and Nz = N dot (0,0,1), N = surface normal, to get the components you want.
Internally, FieldView can calculate surface normals, but it does not always know which direction is
away from the surface (an airfoil, for example). This is only a problem for boundary surfaces. Field-
View supports the passing of normal information for boundary surfaces for PLOT3D and FieldView-
Unstructured files to avoid this problem.

For an Iso-Surface of a scalar quantity, the gradient of the scalar is normal to the surface, and should
point in a consistent direction. You can make this into a unit vector with the nrmlz function in “Func-
tion Calculator”. See the above sections on Unit Vectors and Surface Unit Normals for instructions
on how to create the needed normals.

Once you have the surface normal, you can extract the X component of this with the "vecX" function
in the formula calculator.

For example:

1. To get the components of force on a K Computational Surface, integrate:

VecX("Pressure"*(nrmlz(grad("K"))))
VecY("Pressure"*(nrmlz(grad("K"))))
VecZ("Pressure"*(nrmlz(grad("K"))))

2. To get the components of force on an Iso-Surface of Temperature, integrate:

VecX("Pressure"*(nrmlz(grad("Temperature"))))
VecY("Pressure"*(nrmlz(grad("Temperature"))))
VecZ("Pressure"*(nrmlz(grad("Temperature"))))

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 349

Table of ContentsIndex

3. For a Boundary Surface whose normals are supplied, simply integrate Pressure on the surface
(using Integrate Current Surface). The three normal-based components of force are automatically
calculated.

Built-In CFD Functions
FieldView provides two built-in CFD functions, available on the Function Formula Specification Panel
shown in Figure 60. Both require a vector as input. It is expected that this input vector will be velocity,
but the user is free to provide any vector as input. Below we show an example of the Q-criterion func-
tion in use.

The Q-Criterion function is based on the general form of the criterion proposed by Hunt in 1988. The
function is generalized such that no assumption is made on compressibility. This function computes Q,
the second invariant of the gradient tensor for the vector provided as input. As a reminder, Hunt, Wray
& Moin (1988) have proposed to define a vortex as a spatial region where Q is positive (and pressure
is lower than the ambient one - a criteria generally dropped in literature). For this reason, an Iso Sur-
face of a well chosen positive value of Q is often used to highlight vortices

Lambda2 (2) criterion is based on the observation that, in regions where Lambda2 is less than zero,
rotation exceeds strain, and in conjunction with a pressure minimum, indicates the presence of a vor-
tex. Iso-surfaces should be created with the current value set to a negative value, corresponding to 2
< 0, with the specific value selected based upon characteristics of the flow (turbulence level, etc.). This
offers significant improvements for capturing the vortex topology and geometry over other methods.

 Figure 140 Q criterion feature detection

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 350

Table of ContentsIndex

Miscellaneous Quantities
In this section, we will describe how to compute curve lengths and second derivatives.

Curve Lengths in Structured Geometries
To get the length of a scalar contour in a 2D structured grid, do the following:

1. Make the grid into a 3D grid by adding a second layer at any constant depth (in Z) you like. The
second layer should have the X and Y coordinates as the original layer, as well as the same scalar/
vector results.

2. Make an Iso-Surface of the desired scalar. Use Subset Inc = 1 for greatest accuracy.
3. Set the Iso-Surface value to halfway between the “low” and “high” scalar values, so it is in the mid-

dle of the transition region.
4. Integrate the Iso-Surface to get its surface area. Divide the surface area by the constant depth you

used in step (1).

To get the length of a scalar contour in a 3D grid which is really a 2D axisymmetric problem, do the fol-
lowing:

1. Make an Iso-Surface of the desired scalar. Use Subset Inc = 1 for greatest accuracy.
2. Set the Iso-Surface value to halfway between the “low” and “high” scalar values, so it is in the mid-

dle of the transition region.
3. Integrate the Iso-Surface to get its surface area. Divide the surface area by the angle in radians

covered by the axisymmetric problem's grid.

Second Derivatives
Second derivatives of a given function can be viewed with FieldView. The following is an example for
the second derivative of Temperature, T. Vectors are designated by showing their components in
square brackets [].

On the Functions panel, select Create to create a new function. Use the grad (gradient) and VecY
(Y projection) functions:

Warning: Because the derivatives are calculated from discrete values of temperature, and not a con-
tinuous function, they are only approximate. For this reason, the second derivative is less accurate
than the first derivative. To get better accuracy, use a finer grid (more grid points).

grad(“T”) gradient of T = [T/x, T/y, T/z]
VecY(grad(“T”)) Y component of the gradient = T/y
grad(VecY(grad(“T”))) gradient of T/y = [2T/xy, 2T/y2, 2T/yz]
VecY(grad(VecY(grad(“T Y component of gradient of T/y = 2T/y2

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 351

Table of ContentsIndex

Rotating Quantities
By using the Function Formula Specification panel (“CFD Calculator”), you can properly define the
pressure coefficient and related quantities (using the local dynamic pressure or tip dynamic pressure
for normalization) for rotating problems such as propellers and helicopter rotors.

The formula used for the pressure coefficient (Cp [PLOT3D]) used by FieldView for PLOT3D Q data
is:

where the dynamic pressure, qinf

In order to compute the proper pressure coefficient, the local dynamic pressure needs to be used:

where Vref is the local velocity of the radial section of the rotating blade:

where is the angular velocity (radians/sec) and r is the section radius. In FieldView, formulas can
reference other formulas, so you can define a formula for qlocal, and then define a formula for Cp
based on qlocal.

If the blade is along one of the coordinate axes, then you can use one of the existing FieldView func-
tions (see Appendix A of this Reference Manual):

for the section radius, r. Otherwise, you will have to define your own formula for the section radius.
Then, to calculate qlocal, you will need to plug in values for and inf. To calculate Cp, you will
need also need p and pinf.

The PLOT3D functions (such as Cp) built into PLOT3D and into FieldView assume standard normal-
ization of the quantities in the Q file, namely:

Cp (p - pinf)/ qinf

qinf 0.5 inf Vinf
2

qlocal 0.5 inf Vref
2

Vref r

Rcyl: (X^2+Y^2)^.5
(X^2+Z^2)^.5
(Y^2+Z^2)^.5

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 8 Advanced Numerical Functions 352

Table of ContentsIndex

This is explained in Appendix B of this Reference Manual.

The PLOT3D and FieldView calculation of pressure is:

where Q5 is stagnation energy, Q1 is density (), and Q2, Q3, and Q4 are the components of momen-
tum vector (all of which, as well as pressure, are available in FieldView). Gamma (), by default, is 1.4
in this and in other PLOT3D functions. You can set your own value of gamma by using a command-
line switch when starting FieldView. This set value is then used in calculating all PLOT3D functions.
See Command Line Switches in Chapter 1 of the User’s Guide for more information.

Finally,

Assuming standard normalizations, then the modified pressure coefficient becomes:

inf = 1 (freestream density)

cinf = 1 (free-stream speed of
sound)

p = (- 1) (E - 0.5 V2)
= (- 1) (Q5 - 0.5 * sqrt[(Q2)2 + (Q3)2 + (Q4)2] /

Q1)

pinf = inf cinf cinf /
= 1 /

Cp = (p - pinf) / qlocal
= (Pressure [PLOT3D] - (1 /)) / (0.5 2 r2)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 353

Table of ContentsIndex

Chapter 9

Building Field-
View Plugins

Using FieldView’s toolkit option, users can add their own functions or data readers to the program.
The toolkit option builds “plugin” modules that add your functions and data readers to FieldView with-
out the need to modify the FieldView executable. The routines may be written in either FORTRAN or
C and, once made into a plugin, will behave just like any of the predefined data readers or functions.

Much of the low level documentation on these features has been included in the following files:

ftn_register_data_readers.f
register_data_readers.c

These files can be found as part of the standard FieldView installation in the /user subdirectory.
Anyone interested in building a plugin reader should consult these files.

Adding User-Defined Functions
Note: FieldView contains a built-in formula creation panel which allows you to create formu-
las interactively, rather than using the toolkit interface. However, the toolkit interface is still
available, and is described below. For more information on the Function Formula Specifica-
tion Panel, please see Chapter 2 of this Reference Manual and Chapter 3 of Working
with FieldView.

FieldView provides a number of built-in functions that may be performed on input data. For example,
in looking at grid data, you may look at various cylindrical or spherical radius functions, or angle (arct-
angent) functions. In looking at PLOT3D Q-file results, you may use any of the PLOT3D V3.6 func-
tions. Appendix A of this Reference Manual has a complete list of the functions available in
FieldView.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 354

Table of ContentsIndex

If the function you want is not available, and particularly if your results are not in PLOT3D Q-file format,
you may wish to write your own functions and build them into FieldView. Doing this is a four step pro-
cess:

Step 1: Decide on the function's input requirements
Step 2: Write the function
Step 3: Register the function (so that FieldView knows about it)
Step 4: Build the shared-lib toolkit.

Step 1: Decide on Your Function's Input Requirements
The arguments passed to your function depend on its input requirements. FieldView is told about
these requirements when you register the function in Step 3, and then is able to make decisions about
whether it is safe to call your function in the absence of results data (for example). There are two
questions you need to answer about your function's input requirements:

(a) does it need Q-file data? (b) does it need results data other than Q-file data, such as data from a
function file or data from a non-PLOT3D data reader?

All user-defined functions are provided with grid geometry, and with the previous contents of the cur-
rent function register. If you tell FieldView during the registration step (Step 3) that your function also
needs Q-file data, then the function will also be provided with Q data; however, it will not appear in the
list of available functions until a Q file has been read. If you tell FieldView that your function needs
non-Q results data, then the function will be provided with this data, but will not appear in the list of
available functions until non-Q results have been read.

Step 2: Write Your Function
Example functions showing the proper input/output arguments and their meaning are given in fv/
user/user_defined_functions.f for structured grids and fv/user/user_unstruct_func-
tions.f for unstructured grids. This FORTRAN source file shows examples of functions with all
possible combinations of input requirements. Functions can output either scalar or vector quantities.
Functions with scalar output can be loaded into any of the 3 scalar-valued registers in FieldView: Iso-
Surface, Scalar (for scalar coloring), and Threshold. Functions with vector output can only be loaded
into the FieldView Vector Register.

Functions may be written in either C or FORTRAN. FieldView is told which language you used during
the registration (Step 3). The arguments to a C function are the same as those in the FORTRAN
examples, except that all arguments should be declared as pointers. Handling of multi-dimensional
arrays with adjustable dimensions in C is up to the writer of the routine.

Step 3: Register Your Function
FieldView only knows about functions that have been registered by editing one of two source files:
fv/user/ftn_register_functions.f (for FORTRAN language functions) or fv/user/regis-
ter_functions.c (for C language functions). All functions added to FieldView must be registered
in one of these two central locations. If you want to have several versions of FieldView, each with dif-
ferent sets of user-defined functions, then you need to have several versions of these two files. In any
case, the edited versions of these two files, together with the source that you wrote in Step 2, should all

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 355

Table of ContentsIndex

be in a single directory. This directory can be fv/user, but it can also be any other directory. Each
file contains instructions on how to register your functions, which involves specifying its input require-
ments, classifying its output (scalar-valued or vector-valued), giving it a name that will appear on the
list of available functions, specifying the name of the function (subroutine) you wrote in Step 2.

Step 4: Build the Shared-Lib Toolkit
At the end of Step 3, you should have a single directory containing edited versions of the function reg-
istration files, together with source for the functions you wrote in Step 2. If you or your site also wish to
include user-defined data readers, the registration files and source for these should be in the same
directory (see the section on Adding User-Defined Data Readers for more details).

You should change (cd) to this directory, and then type in the command:

make_fv

to build a FieldView plugin. If you have failed to add fv/bin to your command search path and
properly set the environmental variable FV_HOME (suggested in the FieldView installation proce-
dure), then you will need to type in the full path name of make_fv (located in the fv/bin subdirec-
tory).

This is a script that uses the Unix make utility or the Windows nmake utility to compile all edited
source files in the current directory, and then bind the resulting object files into a FieldView plugin. In
Windows, this script is named make_fv.bat. You may need to edit make_fv (or make_fv.bat)
to use the correct compiler names and flags for your compilers. For Unix, you may also need to edit
the file ld_fv so the Fortran and C compiler libraries match your compilers. Further information can
be found inside the script.

Install the plugin as directed by make_fv.

To build or use plugins for FieldView servers (client-server mode), see the section on Using User
Defined Plugins with a FieldView Server.

It is possible to mistakenly create and register a function with a name that conflicts with ’reserved’
names in FieldView. If you attempt to use a reserved name, you will be presented with a pop-up mes-
sage indicating that there is a naming conflict. Appendix B provides a list of the geometric functions
which are always present. The reserved names in FieldView also depend on the type of data that has
been read. Appendix B also provides a list of the PLOT3D scalar function names which are present
when you read a PLOT3D dataset, which intentionally have the suffix [PLOT3D] to make the inci-
dence of variable name conflicts less likely. Similarly, OVERFLOW data has scalar functions desig-
nated with the [OVERFLOW] suffix. FieldView also automatically creates shock-related formulas with
the suffix [shock] and face-based scalars and vectors with the suffix [BNDRY]. Note that if any for-
mulas are defined, they may also conflict with solver variables. Since formulas span all datasets in a
FieldView session and are not erased by replacing datasets, formulas created for one dataset may
conflict with some appended or replacement datasets.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 356

Table of ContentsIndex

Adding User-Defined Data Readers
Using FieldView's toolkit option, users can add their own functions or data readers to the program.
The toolkit option builds "plugin" modules that add your functions and data readers to FieldView with-
out the need to modify the FieldView executable. The routines may be written in either FORTRAN or
C and, once made into a plugin, will behave just like any of the predefined data readers or functions.

FieldView supports a number of input data formats but if the input format you want is not available,
you may wish to write your own input data reader and build it into FieldView.

Creating a reader is a four step process:

Step 1: Decide on the data reader's input requirements
Step 2: Write the data reader
Step 3: Register the data reader (so that FieldView knows about it)
Step 4: Build the shared-lib toolkit.

Step 1: Decide on Your Data Reader's Input Requirements

FieldView supports two types of data readers:

1. “Split file” data readers, where the grid geometry and the results are in separate files (similar to
PLOT3D XYZ and Q files), and

2. “Combination file” data readers, where the grid and results are in a single file.

The data reader interface (number of functions/subroutines you provide, and their arguments)
depends on which type of data reader input you require. FieldView is told about the data reader input
type when you register the data reader in Step 3. If your solver supports both “two file” and “combina-
tion file” data, you should write two data readers. They may, of course, share a great deal of the same
programming.

Step 2: Write Your Data Reader

All FieldView data readers have two phases: a query phase, which returns some basic information
such as grid sizes and variable names, and a read phase, which transfers the grid and/or results data
to FieldView. Therefore, for each file type, you need to register two FORTRAN subroutines or C func-
tions: one for the query phase and one for the read phase.

Combined File
If your data reader is a “combination file” data reader, then you need to write two FORTRAN subrou-
tines or C language functions:

1. A subroutine or function used by FieldView to query information about the input file (number of
grids, sizes of the grids, number of results variables per grid point, etc.).

2. A subroutine or function to read the grids and results from the file, one grid at a time.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 357

Table of ContentsIndex

Example source showing the proper input/output arguments and their meaning is given in fv/user/
user_combined_file_read.f for structured grids and fv/user/user_unstruct_combined.f
for unstructured grids. This FORTRAN source file shows examples of both the query subroutine and
the “read one grid” subroutine for the combination file case.

Split File
If your data reader is a “split file” data reader, then you need to write four FORTRAN subroutines or C
language functions:

1. A subroutine or function to query the grid geometry file, which returns information such as number
of grids and their sizes.

2. A subroutine or function to read the grids from the grid file, one grid at a time. Example source for
these first two subroutines is given in fv/user/user_grid_file_read.f for structured grids
and fv/user/user_unstruct_grid.f for unstructured grids.

3. A subroutine or function to query the results file, which returns information such as the number of
results variables per grid point.

4. A subroutine or function to read the results from the results file, one grid at a time. Example source
for these last two subroutines is given in fv/user/user_results_file_read.f for struc-
tured grids and fv/user/user_unstruct_results.f for unstructured grids.

Note to C Programmers: The arguments to a C data reader are the same as those in the
FORTRAN examples, except that all arguments should be declared as pointers. The file-
name argument passed to the query functions should be declared char "*". The
var_names argument should be declared char "*" and the start of each variable name
should be separated by exactly 80 characters in this array. The var_names array is initial-

ized with blanks by FieldView; it is not necessary to pad your variable names with blanks or terminate
the names with nulls (although it does no harm). Handling of multi-dimensional arrays with adjustable
dimensions in C is up to the writer of the routine. The file passed in to the query functions should be
opened in the following way:

FILE *fp, *fv_open();

fp = fv_open(iunit, fname);

You should use fv_open instead of the standard UNIX fopen (or open) so that FieldView knows
about the open file and can close it in the event of an error. A file opened with fv_open can be
accessed with the same standard UNIX calls as after using fopen, such as fread or fscanf.

Unstructured Grids Note: When writing the data reader, the ordering of the nodes and faces
becomes very important. To ensure that your elements have the proper ordering, please
refer to Appendix D of this Reference Manual.

Transient Note: If you have transient data that you wish FieldView to recognize, see the description at
the end of this chapter for information about how this may be accomplished.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 358

Table of ContentsIndex

Enabling the Passing of Constants to GUI Buttons
FORTRAN users can pass constants to the GUI buttons located in the function panel. One of the
below routines should be called from the user_results_file_read file. It should be called for
each grid read in with the current grid number as the first argument.

The corresponding GUI buttons will be enabled in the function calculator, and the constants may be
used in FieldView formulas.

 integer ngrid
 real*4 fsmach, re, alpha, time
 real*4 gamma, pinf, tinf, rgas

c This will set up all PLOT3D constants.
c
 call ftn_set_q_constants(ngrid, fsmach, alpha, re, time)

c This will set up all PLOT3D and WIND constants.
c
 call cfl_set_zone_constants(ngrid, fsmach, re, alpha, time,
 + gamma, pinf, tinf, rgas)

Step 3: Register Your Data Reader

FieldView only knows about data readers that have been registered by editing one of two source files:
fv/user/ftn_register_data_readers.f (for FORTRAN language data readers) or fv/user/
register_data_readers.c (for C language data readers). All data readers added to FieldView
must be registered in one of these two central locations. If you want to have several versions of Field-
View, each with different sets of user-defined data readers, then you need to have several versions of
these two files. In any case, the edited versions of these two files, together with the source that you
wrote in Step 2, should all be in a single directory. This directory can be fv/user, but it can also be
any other directory. Each file contains instructions on how to register your data reader(s), which
involves calling the appropriate registration subroutine/function (two-file or combination-file), giving the
data reader a name that will appear on the Data Files & Functions pull-down menu and specifying the
names of the subroutines/functions you wrote in Step 2.

Step 4: Build the Shared-Lib Toolkit

At the end of Step 3, you should have a single directory containing edited versions of the data reader
registration files, together with source for the data readers you wrote in Step 2. If you or your site also
wish to include user-defined functions, the registration files and source for these should be in the same
directory (see the section on Adding User-Defined Functions to FieldView for more details).

You should change (cd) to this directory, and then type in the command:

make_fv

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 359

Table of ContentsIndex

to build a FieldView plugin. If you have failed to add the fv/bin subdirectory to your command
search path (suggested in the FieldView installation procedure), then you will need to type in the
entire path instead.

This is a script that uses the Unix make utility or the Windows nmake utility to compile all edited
source files in the current directory, and then bind the resulting object files into a FieldView plugin. In
Windows, this script is named make_fv.bat. You may need to edit make_fv (or make_fv.bat)
to use the correct compiler names and flags for your compilers. For Unix, you may also need to edit
the file ld_fv so the Fortran and C compiler libraries match your compilers. Further information can
be found inside the script.

Install the plugin as directed by make_fv.

To build or use plugins for FieldView servers (client-server mode), see the section on Using User
Defined Plugins with a FieldView Server.

Writing a User-Defined Reader
To successfully build a User Defined Reader, Fortran subroutines or C functions must be written
according to certain specifications. FieldView supports 4 types of data readers:

1. Unstructured data with separate files for grid (geometry) data and for results (solution) data.
2. Unstructured data with a single combined file for grid (geometry) data and results (solution) data.
3. Structured data with separate files for grid (geometry) data and for results (solution) data.
4. Structured data with a single combined file for grid (geometry) data and results (solution) data.

The fv/user toolkit directory contains examples of each of these types of readers. The process of
creating a data reader is illustrated below with an annotated example of unstructured data with sepa-
rate files for grid and for results. This example, based on the example in the toolkit directory, actually
reads in some types of PLOT3D-format structured data, and converts the data into unstructured grids
and results for FieldView.

Example of Unstructured Grid File Data Reader

Returning Information from the Grid
The first section contains the subroutine to query the unstructured grid. The names of the subroutines
in a data reader are arbitrary, as long as they are communicated to FieldView when "registering" the
data reader. However, it is strongly recommended that you begin all subroutine names with the word
"user", as is done in this example. Any other names may conflict with global names within Field-
View and cause program crashes.

 subroutine user_query_unstruct_grid (fname, lenf, iunit,
 + max_grids, max_face_types, num_grids, num_nodes,
 + num_face_types, face_type_names, wall_flags, iret)

Variable Definitions

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 360

Table of ContentsIndex

Input:
fname = file name
lenf = length of file name
iunit = "unit number" you should use when opening the file (FieldView will take

care of closing the file)
max_grids = maximum number of grids allowed
max_face_types = maximum number of face types allowed

Output:
num_grids = number of grids that will be read from data file
num_nodes (array of node counts for all grids that will be read)
num_face_types = number of boundary face types
face_type_names (array of face-type names)
wall_flags (array of flags for the "wall" behavior of boundary faces)
iret = 0 (success)

= 1 (failure)

Note on face_type_names: The grid query subroutine should identify the "interesting"
face types that might occur in grid files from your solver. It is not necessary to identify
exactly which face types actually occur in any one grid file. When you create boundary
faces, you will be able to assign to a boundary face any of the face type numbers between
1 and num_face_types. Each face type must be assigned a name (character string) in

the face_type_names array, which is initialized to blanks. Note that the number of face types
must be less than or equal to max_face_types!

Note on wall_flags: The wall_flags argument is obsolete. It is present for compatibility with
the older deprecated version of this query routine, which you can see in user_un-
struct_grid.f.deprecated. You must have a wall_flags array argument, but you do not
need to fill in the wall_flags array. It is ignored by FieldView if you use the grid element creation
routines described below in subroutine user_read_unstruct_grid.

Arguments and Variables for Subroutine
The following line causes the Fortran compiler to complain about any variables that are not explicitly
declared. This is useful for catching misspellings.

 implicit none

Arguments for the subroutine:

 character*(*) fname
 integer lenf, iunit, max_grids, max_face_types
 integer num_grids, num_nodes(max_grids)
 integer num_face_types, wall_flags(max_face_types)
 integer iret

Note: You must declare "face_type_names" as an array of character*80, as in the following
line:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 361

Table of ContentsIndex

 character*80 face_type_names(max_face_types)

Local variables in this example:

 integer istat, j
 integer BYTES_PER_INTEGER
 parameter (BYTES_PER_INTEGER = 4)
 integer MAX_GRIDS_IN_FILE
 parameter (MAX_GRIDS_IN_FILE = 100)
 integer idims(MAX_GRIDS_IN_FILE)
 integer jdims(MAX_GRIDS_IN_FILE)
 integer kdims(MAX_GRIDS_IN_FILE)
 common /user_grid_dims/ idims, jdims, kdims

Note on Common Block Names: It is strongly recommended that you begin any common
block names with the word "user". Any other names may conflict with global names within
FieldView and cause program crashes. The following is an example of a safe common
block name: common /user1/ mydata, moredata integer mydata, moredata

Open the File
FieldView provides "open_binary" for opening a binary file (usually written by a C program) in a
FORTRAN subroutine.

 call open_binary (iunit, fname(1:lenf), istat)

 if (istat .ne. 0) then
 iret = 1
 go to 900
 endif

For formatted data, use this open command:

 open (unit=iunit, file=fname(1:lenf), status='OLD',
 + form='FORMATTED', iostat=istat)

For unformatted data, use this open command:

 open (unit=iunit, file=fname(1:lenf), status='OLD',
 + form='UNFORMATTED', iostat=istat)

If your data file cannot be opened with an ordinary C or FORTRAN open or open_binary because
it is a database, for example, then FieldView will not automatically close it or clean up when the data
read is complete. To handle this, we provide a way for you to register your own function to do the clos-
ing and cleaning up.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 362

Table of ContentsIndex

For FORTRAN:

external my_close_sub
call ftn_reg_user_close_file (my_close_sub)

For C:
register_user_close_file (my_close_func)

The FORTRAN subroutine or C function that you registered will be called by FieldView with no input or
output arguments. Your function should close any open databases and free any temporary data.

Determine the Number of Grids
The following example is for a file in single-grid PLOT3D format:

 num_grids = 1

 if (num_grids .gt. max_grids) then
 iret = 1
 go to 900
 endif

You can handle the problem of too many grids by returning immediately (after setting "iret") or by
resetting num_grids to max_grids so that fewer grids are read by FieldView. You must be care-
ful to skip over any data for the unused grids if you choose the second approach.

Determine the Number of Nodes in Each Grid
The following example is for a file in PLOT3D binary data:

 do 100 j = 1, num_grids
 call read_binary (iunit, BYTES_PER_INTEGER, idims(j), istat)
 if (istat.ne.0) go to 101
 call read_binary (iunit, BYTES_PER_INTEGER, jdims(j), istat)
 if (istat.ne.0) go to 101
 call read_binary (iunit, BYTES_PER_INTEGER, kdims(j), istat)
 if (istat.ne.0) go to 101
 100 continue
 101 continue

 if (istat .ne. 0) then
 iret = 1
 go to 900
 endif

 do 150 j = 1, num_grids
 num_nodes(j) = idims(j) * jdims(j) * kdims(j)
 150 continue

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 363

Table of ContentsIndex

For formatted data, use this read command:

 read (iunit, *, iostat=istat)
 + (idims(j), jdims(j), kdims(j), j = 1, num_grids)

For unformatted data, use this read command:

 read (iunit, iostat=istat)
 + (idims(j), jdims(j), kdims(j), j = 1, num_grids)

Determine Number of Boundary Face Types
For this example, we will create two boundary types at the minimum and maximum values of I in the
structured PLOT3D grid.

 num_face_types = 2
 face_type_names(1) = 'I=1'
 face_type_names(2) = 'I=Imax'

 iret = 0

 900 continue
 return
 end

Reading the Grid
This subroutine reads one grid from the file:

 subroutine user_read_unstruct_grid (iunit, igrid, nodecnt,
 + xyz, iret)

Variable Definitions
Input:

iunit = "unit number" that was used when opening the file
igrid = which grid to read this time
nodecnt = number of nodes in this grid (as returned by query routine)

Output:
xyz (array of XYZ coordinates of the grid points)
iret = 0 (success)

= 1 (failure)

Note: This subroutine will be called once for each grid returned by the query subroutine.
The first call to this routine will have igrid=1, the next igrid=2, and so on until
igrid=num_grids.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 364

Table of ContentsIndex

Arguments and Variables
The following line causes the Fortran compiler to complain about any variables that are not explicitly
declared. This is useful for catching misspellings.

 implicit none

Arguments to this subroutine:

 integer iunit, igrid, nodecnt
 real xyz (nodecnt, 3)
 integer iret

Note: The xyz array must be dimensioned as follows. The last array dimension of the
"xyz" array is used to specify which coordinate is being referenced. A value of 1 means
X, 2 means Y, and 3 means Z.

Functions used in this example:

 integer ftn_create_boundary_face

Local Variables:

 integer i, imax, istat, j, jmax, k, kmax, nwords, normals_flag
 integer node_ids(8), wall_info(6)
 integer BYTES_PER_INTEGER, BYTES_PER_REAL
 parameter (BYTES_PER_INTEGER = 4)
 parameter (BYTES_PER_REAL = 4)

 integer A_WALL, NOT_A_WALL
 parameter (A_WALL = 7)
 parameter (NOT_A_WALL = 0)

 integer MAX_GRIDS_IN_FILE
 parameter (MAX_GRIDS_IN_FILE = 100)
 integer idims(MAX_GRIDS_IN_FILE)
 integer jdims(MAX_GRIDS_IN_FILE)
 integer kdims(MAX_GRIDS_IN_FILE)
 common /user_grid_dims/ idims, jdims, kdims

Fill in the XYZ Coordinates of Grid
The following example is for a file that is in binary PLOT3D grid format:

 nwords = 3 * nodecnt

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 365

Table of ContentsIndex

 call read_binary (iunit, nwords * BYTES_PER_REAL, xyz, istat)
 if (istat .ne. 0) go to 900

Use this read statement for formatted data:

 read (iunit, *, iostat=istat) xyz

For unformatted data use:

 read (iunit, iostat=istat) xyz

Creating Grid Elements
The following describes how to create grid elements (cells) and boundary faces as separate entities.
There is an older deprecated method of creating grid elements and boundary faces at the same time.
In the older method, boundary faces are defined as faces of grid elements. This method is described
in the sample source file user_unstruct_grid.f.deprecated. If you use the deprecated
method, you will not be able to read boundary results (quantities that are defined only on boundaries,
such as wall quantities). Also, you will not be able to get boundary surface integrals that involve sur-
face normals.

The grid elements (cells) and boundary faces are defined in terms in the node numbers that belong to
the grid element or boundary face. You can create the grid elements first, or the boundary faces first,
or mix them together (some grid elements, then some boundary faces, then more grid elements, and
so on). There is no requirement that boundary faces are also faces of grid elements.

The node numbers used to define grid elements and boundary faces are indices into the XYZ data for
this grid. A node number of 1 means the first node in the XYZ coordinates array for this grid. If you
have multiple grids, the node numbers start at 1 inside each grid.

See the FieldView User's Guide for a description of each of the available grid element types. It is
important that the order of the nodes follow the rules given, to avoid elements that are "twisted" (inter-
sect themselves).

The available boundary face types are 3 nodes (triangles) or 4 nodes (quadrilaterals). In this example,
we convert the specified PLOT3D grid to hexahedra (bricks), and then create boundary faces for
selected grid boundaries.

Convert the specified PLOT3D grid to hexahedron elements:

 imax = idims(igrid)
 jmax = jdims(igrid)
 kmax = kdims(igrid)
 do 100 k = 1, kmax - 1
 do 100 j = 1, jmax - 1
 do 100 i = 1, imax - 1

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 366

Table of ContentsIndex

In a PLOT3D grid, the nodes are ordered as follows:

(1,1,1),(2,1,1),...,(imax,1,1)
...
(1,jmax,1),(2,jmax,1),...,(imax,jmax,1)
(1,1,2),(2,1,2),...,(imax,1,2)
...
(1,jmax,kmax),(2,jmax,kmax),...,(imax,jmax,kmax)

Thus, the position of node (i,j,k) in the PLOT3D grid is:
i + (j-1)*imax + (k-1)*imax*jmax

The cell whose lower corner is at (i,j,k) and whose upper corner is at (i+1,j+1,k+1) has
nodes:
1. (i,j,k)
2. (i,j,k+1)
3. (i+1,j,k)
4. (i+1,j,k+1)
5. (i,j+1,k)
6. (i,j+1,k+1)
7. (i+1,j+1,k)
8. (i+1,j+1,k+1)

The call we use here creates an 8-node hexahedron (6 faces):

 call ftn_create_hex_ele (wall_info, node_ids, istat)

For a 4-node tetrahedron (4 faces) use:

 call ftn_create_tet_ele (wall_info, node_ids, istat)

For a 5-node pyramid (5 faces) use:

 call ftn_create_pyra_ele (wall_info, node_ids, istat)

For a 6-node prism (also known as a wedge with 5 faces) use:

 call ftn_create_prism_ele (wall_info, node_ids, istat)

For an arbitrary element (up to 256 faces) use:

 call ftn_create_arb_poly_ele (wall_info, node_ids, istat)

Some additional comments concerning arbitrary elements are provided below:

c arbitrary polyhedron (maximum of 256 faces; each face has

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 367

Table of ContentsIndex

c a maximum of 256 nodes):
c integer istat, num_faces, wall_info(256)
c integer num_verts_per_face(256)
c integer face_verts(256*256)
c call ftn_create_arb_poly_ele (num_faces, wall_info,
c num_verts_per_face, face_verts, istat)
c
c The face_verts array contains the node_ids that define
c each face. The faces follow each inside the face_verts
c array. For example, if face#1 has 4 nodes and face#2
c has 3 nodes, then:
c num_verts_per_face(1) = 4
c face_verts(1) = face#1 node#1
c face_verts(2) = face#1 node#2
c face_verts(3) = face#1 node#3
c face_verts(4) = face#1 node#4
c num_verts_per_face(2) = 3
c face_verts(5) = face#2 node#1
c face_verts(6) = face#2 node#2
c face_verts(7) = face#2 node#3

If istat is not zero, then the subroutine failed.

For C programmers, the corresponding calls are:

int istat, node_ids[8], wall_info[6];
istat = create_hex_ele (wall_info, node_ids);

int istat, node_ids[4], wall_info[4];
istat = create_tet_ele (wall_info, node_ids);

int istat, node_ids[5], wall_info[5];
istat = create_pyra_ele (wall_info, node_ids);

int istat, node_ids[6], wall_info[5];
istat = create_prism_ele (wall_info, node_ids);

int istat, node_ids[256*256], wall_info[256];
int num_faces, num_verts_per_face[256], face_verts[256*256];
istat = create_arb_poly_ele (num_faces, wall_info,

num_verts_per_face, face_verts);

node_ids(1) = i + (j-1)*imax + (k-1)*imax*jmax
node_ids(2) = node_ids(1) + imax*jmax
node_ids(3) = node_ids(1) + 1
node_ids(4) = node_ids(1) + 1 + imax*jmax

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 368

Table of ContentsIndex

node_ids(5) = node_ids(1) + imax
node_ids(6) = node_ids(1) + imax + imax*jmax
node_ids(7) = node_ids(1) + 1 + imax
node_ids(8) = node_ids(1) + 1 + imax + imax*jmax

The wall_info array must be filled with a wall value for each face of this cell. The only supported
values are A_WALL and NOT_A_WALL, defined as parameter constants above. Specifying A_WALL
marks that element face as a wall for the purpose of streamline calculation. This tells FieldView that
streamlines should not pass through this element face. It has no other effect. Marking an element
face with A_WALL does not automatically create a wall boundary face. All boundary faces (walls,
inlets, outlets, and others) must be created by calling ftn_create_boundary_face (Fortran) or
create_boundary_face (for C programmers) as shown below.

To find streamline walls in a PLOT3D grid with IBlanks, we should examine the faces of this cell, look-
ing for faces whose 4 corners all have IBlank values of 2. Each such face would be marked with a
wall_info value of A_WALL. Instead of reading the IBlanks from the grid file, in this example we
will simply mark all faces with I=1 or I=imax as walls. With the node numbering given above and
the hex face numbering used in FieldView, the "I" faces of a grid cell are face 5 (hex vertices
1,5,6,2) and face 6 (hex vertices 3,4,8,7).

 wall_info(1) = NOT_A_WALL
 wall_info(2) = NOT_A_WALL
 wall_info(3) = NOT_A_WALL
 wall_info(4) = NOT_A_WALL
 if (i .eq. 1) then
 wall_info(5) = A_WALL
 else
 wall_info(5) = NOT_A_WALL
 endif
 if (i .eq. imax-1) then
 wall_info(6) = A_WALL
 else
 wall_info(6) = NOT_A_WALL
 endif
 call ftn_create_hex_ele (wall_info, node_ids, istat)

 if (istat .ne. 0) go to 900
 100 continue

Warning: In Fortran, if istat is not zero, the element will not be created. In C, if istat is zero, the
element will not be created (the opposite of Fortran). Unlike other toolkit functions, the element cre-
ation functions are not consistent between Fortran and C.

Creating Boundary Faces
Boundary faces are created using the function:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 369

Table of ContentsIndex

stat=ftn_create_boundary_face(itype,num_nodes, node_ids, normals_flag)

where:

itype = an integer between 1 and the number of boundary types, specifying which bound-
ary type includes this face

num_nodes = 3 (triangle) or 4 (quadrilateral)

node_ids = an array of 3 or 4 node numbers defining this face.

If the face has 4 nodes, they must be specified in clockwise or counter-clockwise order. Do not follow
a node with the node diagonally opposite - this will cause the face to be twisted.

normals_flag = 0 or not 0

A non-zero means that boundary faces of this type have consistent "clockness", so that correctly fac-
ing surface normals can be calculated using the right-hand rule for all faces of this type. A value of
zero means that boundary faces of this type do not have consistent clockness. If boundary faces have
consistent clockness, then boundary surface integrals involving surface normals will be available for
"current surface" integration of boundary surfaces in FieldView.

When ftn_create_boundary_face returns, if istat is not zero, the boundary face was not cre-
ated.

For C programmers, the corresponding function is:

int create_boundary_face(int itype,int num_nodes,node_ids, normals_-
flag)

In this example, we specified two boundary types in the query subroutine at the top of this sample
source file:

boundary type 1 was 'I=1'
boundary type 2 was 'I=Imax'

Therefore, we will convert all I=1 faces of the PLOT3D grid into boundary faces of type 1, and all
I=Imax faces into boundary faces of type 2:

 i = 1
 do 200 k = 1, kmax - 1
 do 200 j = 1, jmax - 1

As mentioned earlier, the position of node (i,j,k) in the PLOT3D grid is:

i + (j-1)*imax + (k-1)*imax*jmax

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 370

Table of ContentsIndex

The face whose lower corner is at (i,j,k) and whose upper corner is at (i,j+1,k+1) has
nodes:

(i,j,k)
(i,j+1,k)
(i,j+1,k+1)
(i,j,k+1)

Therefore:

node_ids(1) = i + (j-1)*imax + (k-1)*imax*jmax
node_ids(2) = node_ids(1) + imax
node_ids(3) = node_ids(1) + imax + imax*jmax
node_ids(4) = node_ids(1) + imax*jmax

In this example, we don't care about making sure that all boundary faces have consistent clockness,
therefore:

normals_flag = 0

I=1 nodes belong to boundary type 1, therefore:

istat = ftn_create_boundary_face (1, 4, node_ids, normals_flag)

Warning: In Fortran, if istat is not zero, the element will not be created. In C, if istat is zero, the
element will not be created (the opposite of Fortran). Unlike other toolkit functions, the element cre-
ation functions are not consistent between Fortran and C.

 if (istat .ne. 0) go to 900

 200 continue

 i = imax
 do 300 k = 1, kmax - 1
 do 300 j = 1, jmax - 1
 node_ids(1) = i + (j-1)*imax + (k-1)*imax*jmax
 node_ids(2) = node_ids(1) + imax
 node_ids(3) = node_ids(1) + imax + imax*jmax
 node_ids(4) = node_ids(1) + imax*jmax
 normals_flag = 0

I=1 nodes belong to boundary type 2, therefore:

 istat = ftn_create_boundary_face (2, 4, node_ids, normals_flag)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 371

Table of ContentsIndex

Warning: In Fortran, if istat is not zero, the element will not be created. In C, if istat is zero, the
element will not be created (the opposite of Fortran). Unlike other toolkit functions, the element cre-
ation functions are not consistent between Fortran and C.

 if (istat .ne. 0) go to 900
 300 continue

Note: We created all boundary faces of type 1, and then all boundary faces of type 2. This
is somewhat more efficient in FieldView than creating one boundary face of type 1, fol-
lowed by a boundary face of type 2, then a face of type 1, and so on. If you have large
numbers of boundary faces, then making sure boundary faces of the same type are grouped
together can make a difference in the amount of memory needed, and in the speed of pro-

cessing the boundary faces.

 900 continue
 if (istat .ne. 0) then
 iret = 1
 else
 iret = 0
 endif

 return
 end

Example of Unstructured Results File Data Reader

The subroutine for obtaining information on the results file is:

 subroutine user_query_unstruct_results (fname, lenf, iunit,
 + max_grids, max_vars, num_grids, num_nodes, num_vars,
 + var_names, iret)

Variable Definitions
Input:

fname = file name
lenf = length of file name
iunit = "unit number" you should use when opening the file

(FieldView will take care of closing the file)
max_grids = maximum number of grids allowed
max_vars = maximum number of result variables allowed per grid point

Output:
num_grids = number of grids that will be read from data file
num_nodes (array of node counts for all grids that will be read)
num_vars = number of result variables per grid point.

Note: a vector variable counts as 3 results!
var_names = array of variable names in the same format as a FieldView function name file.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 372

Table of ContentsIndex

For example, if the results file is like a PLOT3D Q file, it contains 5 variables per
grid point with the following names:

density
u-momentum; momentum
v-momentum
w-momentum
stagnation energy

iret = 0 (success)
= 1 (failure)

This defines 5 scalar functions and 1 vector function (momentum) whose components are scalar vari-
able 2 together with the next two scalar variables. See Appendix C for more information on the Func-
tion Name File format.

Arguments and Variables for Subroutine
The following line causes the Fortran compiler to complain about any variables that are not explicitly
declared. This is useful for catching misspellings.

 implicit none

Arguments for the subroutine:

 character*(*) fname
 integer lenf, iunit, max_grids, max_vars, num_grids, num_vars
 integer num_nodes(max_grids), iret

You must declare "var_names" as an array of character*80, as in the following line:

 character*80 var_names(max_vars)

Local variables in this example:

 integer istat, j
 integer nvar_grid
 integer BYTES_PER_INTEGER
 parameter (BYTES_PER_INTEGER = 4)

 integer MAX_GRIDS_IN_FILE
 parameter (MAX_GRIDS_IN_FILE = 100)
 integer idims(MAX_GRIDS_IN_FILE)
 integer jdims(MAX_GRIDS_IN_FILE)
 integer kdims(MAX_GRIDS_IN_FILE)
 common /user_grid_dims/ idims, jdims, kdims

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 373

Table of ContentsIndex

Note on Common Block Names: It is strongly recommended that you begin any common
block names with the word "user". Any other names may conflict with global names within
FieldView, and cause program crashes. The following is an example of a safe common
block name: common /user1/ mydata, moredata integer mydata, moredata

Opening the File
FieldView provides "open_binary" for opening a binary file (usually written by a C program) in a
Fortran subroutine:

 call open_binary (iunit, fname(1:lenf), istat)

 if (istat .ne. 0) then
 iret = 1
 go to 900
 endif

This is the subroutine for formatted data:

 open (unit=iunit, file=fname(1:lenf), status='OLD',
 + form='FORMATTED', iostat=istat)

This is the subroutine for unformatted data:

 open (unit=iunit, file=fname(1:lenf), status='OLD',
 + form='UNFORMATTED', iostat=istat)

Determine Number of Grids
The following example is for a file in single-grid PLOT3D format:

 num_grids = 1

 if (num_grids .gt. max_grids) then
 iret = 1
 go to 900
 endif

Note: You should handle the problem of too many grids using the same approach you chose when
reading the grid file.

Determine the Number of Nodes and the Number of Variables at Each Grid Point
Remember that vector quantities count as three variables. Note that FieldView requires all points on
all grids to have the same variables defined.

The following example is for a binary PLOT3D file:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 374

Table of ContentsIndex

 do 100 j = 1, num_grids
 call read_binary (iunit, BYTES_PER_INTEGER, idims(j), istat)
 if (istat.ne.0) go to 101
 call read_binary (iunit, BYTES_PER_INTEGER, jdims(j), istat)
 if (istat.ne.0) go to 101
 call read_binary (iunit, BYTES_PER_INTEGER, kdims(j), istat)
 if (istat.ne.0) go to 101

For a Function file use:

 call read_binary (iunit, BYTES_PER_INTEGER, nvar_grid, istat)
 if (istat.ne.0) go to 101

For the Q file use:

 nvar_grid = 5
 if (j. eq. 1) then
 num_vars = nvar_grid
 else if (num_vars .ne. nvar_grid) then
 iret = 1
 go to 900
 endif
 100 continue
 101 continue

 do 175 j = 1, num_grids
 num_nodes(j) = idims(j) * jdims(j) * kdims(j)
 175 continue

Note: All grids must have same number of variables.

For formatted data use this read statement (For a Q file, omit nvars(j) from the read and set it to
5):

 read (iunit, *, iostat=istat)
 + dims(j), jdims(j), kdims(j), nvars(j), j = 1, num_grids)

Fill in the variable names in FieldView Function Name File format (see Appendix C for more informa-
tion on this format). The following names are correct for a PLOT3D Q file. You should change these to
match the number and names of the variables in your results file.

 var_names(1) = 'density'
 var_names(2) = 'u-momentum; momentum'
 var_names(3) = 'v-momentum'
 var_names(4) = 'w-momentum'
 var_names(5) = 'stagnation energy'

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 375

Table of ContentsIndex

 if (istat .ne. 0) then
 iret = 1
 go to 900
 endif

 iret = 0

 900 continue
 return
 end

Alternatively, the following will identify all variables as scalars with default names:

 do 200 j = 1, num_vars
 var_names(j) = 'V' // char(ichar('0') + j)
 200 continue

Reading the Results File
Use this subroutine to read the results:

 subroutine user_read_unstruct_results (iunit, igrid, nodecnt,
 + num_vars, xyz, vars, iret)

Variable Definitions
Input:

iunit = "unit number" that was used when opening the file
igrid = which grid to read this time
nodecnt = number of nodes in this grid (as returned by query routine)
num_vars = number of result variables per grid point
xyz = array of XYZ coordinates of the points in this grid

Output:
vars (array of result values for this grid)
iret = 0 (success)

= 1 (failure)

Note on igrid: This subroutine will be called once for each grid returned by the query sub-
routine. The first call to this routine will have igrid=1, the next igrid=2, and so on until
igrid=num_grids.

Note on num_vars: A vector variable counts as 3 results!

Arguments for this Subroutine
The following line causes the Fortran compiler to complain about any variables that are not explicitly
declared. This is useful for catching misspellings.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 376

Table of ContentsIndex

 implicit none

 integer iunit, igrid, nodecnt, num_vars

Note: The following arrays must be dimensioned as shown here:

 real xyz (nodecnt, 3)
 real vars (nodecnt, num_vars)
 integer iret

Functions used in this example:

 integer ftn_init_bndry_results
 integer ftn_store_bndry_result

Local variables in this example:

 integer istat, nwords
 real qstuff(4)
 integer BYTES_PER_INTEGER, BYTES_PER_REAL
 parameter (BYTES_PER_INTEGER = 4)
 parameter (BYTES_PER_REAL = 4)
 integer num_bvars, results_flags(2), num_faces_with_results
 character*80 bvar_names(2)
 integer i, j, k, imax, jmax, kmax
 integer MAX_GRIDS_IN_FILE
 parameter (MAX_GRIDS_IN_FILE = 100)
 integer idims(MAX_GRIDS_IN_FILE)
 integer jdims(MAX_GRIDS_IN_FILE)
 integer kdims(MAX_GRIDS_IN_FILE)
 common /user_grid_dims/ idims, jdims, kdims

 call read_binary (iunit, 4 * BYTES_PER_REAL, qstuff, istat)

 nwords = num_vars * nodecnt
 call read_binary (iunit, nwords * BYTES_PER_REAL, vars, istat)

Boundary Results
If you also have boundary results (quantities that are defined only on boundaries, such as wall quanti-
ties), then you need to store these in a different way. In FieldView, boundary results are assumed to
be face-based: scalar or vector values assigned to the whole boundary face, rather than the boundary
nodes (vertices). Boundary results are only supported if you created the boundary faces with
ftn_create_boundary_face (create_boundary_face for C programmers). See the sample
source file user_unstruct_grid.f for details.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 377

Table of ContentsIndex

In order to store boundary face results, you must first call ftn_init_bndry_results (init_bn-
dry_results for C programmers) to tell FieldView that you have boundary results for this grid.

ftn_init_bndry_results is called as follows:

 integer ftn_init_bndry_results
 integer num_bvars, results_flags(num_face_types)
 character*80 bvar_names(num_bvars)
 integer num_faces_with_results
 istat = ftn_init_bndry_results (num_bvars, results_flags,
 + bvar_names, num_faces_with_results)

Where the input arguments are:

num_bvars = the number of boundary variables per face

results_flags = an array of integers, one per boundary type

Where nonzero means that boundary results are expected for this boundary type. The number of
boundary types is the value of "num_face_types" returned by your grid query subroutine.

bvar_names = array of boundary variables names.

This has the same format as the "var_names" array returned by your results query subroutine.

The output argument is:
num_faces_with_results = number of boundary faces in this grid that have boundary

results

This is based on the results_flags array and the number of faces of each type in this grid. This
may help you check your boundary face loops when storing boundary results.

When ftn_init_bndry_results returns its results and if istat is not zero, then the function
failed. You will not be able to store boundary results. If you have boundary results on more than one
grid in this results file, each grid must pass the same arguments to ftn_init_bndry_results.

For C programmers, the corresponding function is:

int init_bndry_results (int num_bvars, int results_flags,
char bvar_names, int *num_faces_with_results);

In this example, we specified two boundary types in the sample source file user_un-
struct_grid.f, called 'I=1' and 'I=Imax'. We will suppose that both of these boundaries have
boundary results and two boundary variables, are called 'Wall Temperature' and 'Heat Flux':

 num_bvars = 2

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 378

Table of ContentsIndex

 results_flags(1) = 1
 results_flags(2) = 1
 bvar_names(1) = 'Wall Temperature'
 bvar_names(2) = 'Heat Flux'
 istat = ftn_init_bndry_results (num_bvars, results_flags,
 + bvar_names, num_faces_with_results)
 if (istat .ne. 0) go to 900

PLOT3D Q files do not have boundary results, so for this example we will suppose that the I=1 faces
have values of zero for wall temperature and for heat flux, while the I=Imax faces have values of 1
for wall temperature and 2 for heat flux. First, we store all values for wall temperature.

Loop through all I=1 faces in the PLOT3D grid, in the same order that we called ftn_cre-
ate_boundary_face in user_unstruct_grid.f:

 imax = idims(igrid)
 jmax = jdims(igrid)
 kmax = kdims(igrid)
 i = 1
 do 200 k = 1, kmax - 1
 do 200 j = 1, jmax - 1
 istat = ftn_store_bndry_result (0.0)

Warning: In Fortran, if istat is not zero, the element will not be created. In C, if istat is zero, the
element will not be created (the opposite of Fortran). Unlike other toolkit functions, the element cre-
ation functions are not consistent between Fortran and C.

 if (istat .ne. 0) go to 900
 200 continue

Loop through all I=Imax faces in the PLOT3D grid, in the same order that we called ftn_cre-
ate_boundary_face in user_unstruct_grid.f:

 i = imax
 do 300 k = 1, kmax - 1
 do 300 j = 1, jmax - 1
 istat = ftn_store_bndry_result (1.0)

Warning: In Fortran, if istat is not zero, the element will not be created. In C, if istat is zero, the
element will not be created (the opposite of Fortran). Unlike other toolkit functions, the element cre-
ation functions are not consistent between Fortran and C.

 if (istat .ne. 0) go to 900
 300 continue

Now, loop again, this time for heat flux:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 379

Table of ContentsIndex

 i = 1
 do 400 k = 1, kmax - 1
 do 400 j = 1, jmax - 1
 istat = ftn_store_bndry_result (0.0)

Warning: In Fortran, if istat is not zero, the element will not be created. In C, if istat is zero, the
element will not be created (the opposite of Fortran). Unlike other toolkit functions, the element cre-
ation functions are not consistent between Fortran and C.

 if (istat .ne. 0) go to 900
 400 continue

 i = imax
 do 500 k = 1, kmax - 1
 do 500 j = 1, jmax - 1
 istat = ftn_store_bndry_result (2.0)
 if (istat .ne. 0) go to 900
 500 continue

 900 continue
 if (istat .ne. 0) then
 iret = 1
 else
 iret = 0
 endif

 return
 end

Transient User-Defined Reader
FieldView supports two ways of reading transient data. The first way is to have the user pick a file
representing a single time step. The file name must have a time step number embedded in it using a
naming convention described in Transient Data.

In this case, selecting the data file automatically selects the time step. However, to inform FieldView
that each time step is in a separate file, the following must be inserted in the data reader’s query func-
tion:

For FORTRAN:

call ftn_allow_timestep_per_file

For C:
allow_timestep_per_file();

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 380

Table of ContentsIndex

Do not use the time step selection functions described below.

The second way of handling transient data is to have the user pick a file or database and have the
user-defined reader construct a list of time steps found in that file or database. This list is passed to
FieldView, which asks the user to choose a time step. To use the second form of time step selection:

Using C

float tstep [max-number-of-steps][2], *time
int nstep, *step, *iret
time_step_get_value (tstep, nstep, step, time, iret);

Using FORTRAN

real tstep (2,max-number-of-steps), time
integer nstep, step, iret
call ftn_tstep_get_value (tstep, nstep, step, time, iret)

Variable Definitions
Input:

tstep = an array of floating point step number/solution time value pairs
nstep = number of time steps

Output:
step = the step number returned
time = the solution time value returned
iret = return code

This function should be called from the read phase before reading the first grid. If there are multiple
grids, this function should only be called for the first grid after the query phase. If the return code iret
is not zero, then either the user cancelled the data read or ther was an error. If there is a non-zero
return code, exit from the reader immediately and pass the return code back to FieldView.

Examples for the two supported languages, C and FORTRAN follow. The lines in the sample code
which contain an ellipses (...) are meant to stand as additional lines that your actual code may con-
tain. Only the pertinent coding for the transient recognition is included.

C Example:

--- Declarations within the scope of both the query and read functions. ---
...
/* Maximum number of time steps for this example is 5000. */
#define MAX_TIMES 5000

static float times[MAX_TIMES][2];
static int ntimes = 0;

--- In the user defined reader query function ---

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 381

Table of ContentsIndex

...
 int istep;
 float time;
...
 ntimes = 0;

 /* Loop to read step number/solution time from the solver file
 * incrementing ntimes for each pair, and assigning values
 * in the times array.
 */
 do for as many as required
 {
 /* Read the istep and time value from the file. */
 ...

 times[ntimes][0] = (float)istep;
 times[ntimes][1] = time;
 }
...

--- In the user defined reader read function, typically the first thing ---
...
 int istep;
 float time;
...
 *iret = 0;

 /* Select the desired timestep.
 * Do this once, for the first grid after the query phase.
 * If ntimes is zero this could be steady state.
 */
 if (ntimes > 1) {
 time_step_get_value(times, ntimes, &istep, &time, iret)
 if (iret != 0) {
 goto 999
 }

 if ((istep == 0) && (ntimes > 0)) {
 printf("File does not specify a time step. Using first as
default.\n");
 istep = times[0][0];
 time = times[0][1];
 }
 }

 /* Continue reading the solution file. The step number

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 382

Table of ContentsIndex

 * istep has been selected.
 */
...

FORTRAN Example:

--- In the user defined reader query subroutine ---
...
C Maximum number of time steps for this example is 5000
 common /usertime/times, ntimes
 real*4 times(2,5000)
 integer ntimes
 integer istep
 real*4 time
...

 ntimes=0
...
C Loop to read step number/solution time from the solver file
C incrementing ntimes for each pair, and assigning values
C in the times array.
 do for as many as required
 ntimes=ntimes+1
C Error if too many time steps
 if (ntimes.gt.5000) goto 705

C Read the istep and time value from the file
...
 times(1,ntimes)=istep
 times(2,ntimes)=time
 enddo

--- In the user defined reader read subroutine, typically first thing ---
...
C Maximum number of time steps for this example is 5000
 common /usertime/times, ntimes
 real*4 times(2,5000)
 integer ntimes
 integer istep
 real*4 time

 iret = 0
C Select the desired timestep.
C Do this once, for the first grid after the query phase.
C If ntimes is zero this could be steady state.
 if (ntimes.gt.1) then

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 383

Table of ContentsIndex

 call ftn_tstep_get_value(times, ntimes, istep, time, iret)
 if (iret .ne. 0) then
 goto 999
 endif

C
 if (istep.eq.0.and.ntimes.gt.0) then
 print *, 'My Reader warning: File does not specify a time step.'
 print *, 'Using the first time step as the default.'
 istep=times(1,1)
 time=times(2,1)
 endif
 endif

C Continue reading the solution file. The step number
C istep has been selected.

Support for Cartesian Grids
To enable optimization for Cartesian grids:

Using C:

void set_cartesian_grid_flag (int grid, int flag);

where:
 grid=0 for the first grid in the data file being read, and
 grid=1 for the second grid, etc.
and:
 "flag" is any nonzero value if the grid is Cartesian (rectangular).
 flag=0 if the grid is not Cartesian

Using Fortran:

call ftn_set_cartesian_grid_flag (igrid, iflag)

where:
 igrid=1 for the first grid in the data file being read, and
 igrid=2 for the second grid, etc.
and:
 "iflag" is any nonzero value if the grid is Cartesian (rectangu-

lar).
 iflag=0 if the grid is not Cartesian

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 384

Table of ContentsIndex

Only structured grids can be Cartesian. If you set the Cartesian grid flag for an unstructured grid, Fiel-
dView will issue a warning and remove the flag.

Grids flagged as Cartesian skip all of the grid preprocessing (for point probe and coord surfaces), so
they read in faster and use less memory. Probing and coord surfaces are much faster for Cartesian
grids. Other things that use probing, such as using a Cartesian dataset as the "results target" for data-
set sampling, will also be much faster.

If all grids are flagged as Cartesian, DataGuideTM is disabled.

Using User-Defined Plugins with a FieldView Server
In the shared library approach used by FieldView, there is no need to build separate client and server
shared libraries. The same shared library created for the client can be used for the server.

If you’ve built a shared library plugin for the client, and copied it (as instructed) into the bin/plugins
directory of your FieldView installation, then the local server will automatically use the plugin you cre-
ated. If you are not using any servers other than the local server, you can skip to step 4 of this section.

1. Installing the Server Toolkit for Your Server

If you chose to install the directory of compressed servers during the FieldView installation, you will
find a subdirectory in your FieldView installation called servers. If you did not choose to install
these, you will find this same directory on the FieldView DVD in the unix/servers directory.

In the servers directory, locate the appropriate compressed file for your platform. Unpack the
file as follows:

zcat fvsrv_<platform>_tar.Z | tar xvf -

This will unpack the server for the specified platform, as well as a directory called user, which
contains the files needed for building a server with user-defined routines.

2. Edit make_fvsrv for Shared Library Toolkit

You should edit the file make_fvsrv in the user directory, so the Fortran and C compiler names
and flags match those for your compilers.

3. Bind Your Routines into the Server

Data readers and functions can be written for a FieldView server in the same manner as they are
written for FieldView. If you have already written these for a FieldView client, you should be able
to use the same C and Fortran files in the server, except for any platform-specific changes in your
data readers and functions.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 385

Table of ContentsIndex

Once you have added your changes into the user directory, build a server plugin by issuing the
command:

make_fvsrv

Install the plugin as instructed by make_fvsrv.

4. Create or Edit a FieldView Server Config File for Your Server

Go to the sconfig subdirectory of your FieldView installation directory. Create a server config
file for the new server in this directory. If you previously created a server config file for this server,
you can optionally edit this file instead of creating a new one.

Make sure to update the ServerProgram line with the full path of the server executable.

See “Installing FieldView Servers” in the Installation Guide for more information on server config
files.

For each user-defined data reader you have added to your server, you must add a corresponding
line to the server config file. Each line must begin with "UserDefinedReader:".

If your reader reads grid geometry and results from separate files, then add the word "Separate".
Otherwise, add the word "Combined" for readers which read all data from a single file.

If your reader is for structured grids, add the word "Structured". Otherwise, add the word
"Unstructured" for unstructured grid readers.

Finally, add the title exactly as it appears in your registration function.

For example, to add a reader called "My Data Reader" which reads structured data with sepa-
rate grid and results files, add the following line:

UserDefinedReader: Separate Structured My Data Reader

Unlike user-defined readers, user-defined functions do not require additional entries in the server
config file. For complete information on how to set up Server Configuration (.srv) files for FieldView,
Step 3 – Set up a Server Configuration File in the Installation Guide.

If you use a FieldView client on the same platform as the server, then the "local" server has the
best performance. You can edit the server config file local.srv to include any user-defined
data readers you have added to the local server. Alternatively, you can create a new local server
config file for your new server; it will run in local mode as long as the client and server are on the
same machine and the "ServerName:" line is not present in the config file.

5. Use Your New Server from FieldView

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 386

Table of ContentsIndex

When you run FieldView, you should see an entry for your new server config file on the "Choose
Server..." sub-menu. When you choose the new or edited server config file, your user-defined
readers and/or functions should be available.

Frequently Asked Questions

How can I configure my Plugin Reader to run on a different platform?
The Plugin Toolkit reader(s) you may obtain or create yourself may be executable on only specific
operating system(s). As an example, you may want to access your reader built for Linux, while running
a FieldView Windows Client. In order to do that, you will need to use a Server Configuration file (.srv)
to provide the reader name to the FieldView Client program, and read your data via client-server. For
instance, if you register a reader name My Data Reader in your plugin for a Separate Structured style
data format, you’ll need to place the following line in the file:

UserDefinedReader: Separate Structured My Data Reader

This will allow the FieldView Client to produce a Data Input option for My Data Reader, given of course
that you have placed the plugin for that reader in the plugins sub-folder where the FieldView Server
executable resides on that other OS. This is explained in steps 3 through 5 of the above section Using
User-Defined Plugins with a FieldView Server. For complete information on how to set up Server
Configuration (.srv) files for FieldView, Step 3 – Set up a Server Configuration File in the Installation
Guide.

How many plugins can be used?
There is no limit on the number of plugins.

How does FieldView locate the plugin?
If the environment variable FV_PLUGINS is set then the directory defined by that variable is searched
for a file ending in .so (Unix/Linux) or .dll (Windows). The first file found is used. When the envi-
ronment variable is set no other directory is searched. If the environment variable is not set the direc-
tory $FV_HOME/plugins is searched while trying to locate plugin (.so or .dll) components. Note
that the server does not use the environment variable FV_PLUGINS.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 387

Table of ContentsIndex

How does the FieldView Server locate the plugin?
The server executable will look for a /plugins directory (in the servers local directory) in trying to
locate plugin (.so or .dll) components.

Is a FORTRAN compiler required?
No. But three Fortran symbols must be stubbed with the following C code:

void FTNSYM(ftn_register_data_readers) {}
void FTNSYM(ftn_register_functions) {}
void FTNSYM(ftn_fv_close) {}

Note: The FTNSYM macro is defined in toolkit.c.

What changes are needed to accommodate different compilers?
For External names:
Different FORTRAN compilers may or may not append an underscore to external names. To resolve
this, change the FTNSYM macro in toolkit.c to match your FORTRAN compiler.

On Fortran string lengths:
Different FORTRAN compilers may use different size integers to hold the length of a string. This
length argument is seen as a separate argument when FORTRAN calls C. The length seen by C is
defined by the typedef for ftn_strlen_t in toolkit.c. To resolve this, change the typedef
to match your FORTRAN compiler.

Compiler name and options:
Compiler name and options may need to be changed in the file make_fv which creates Make-
file.fv.

Linker name and options:
Linker name and options may need to be changed in the file ld_fv which creates fv_toolkit.so.

Writing and using Parallel User-Defined Data Readers
FieldView supports two kinds of parallelization for data readers. These are "grid-parallel" and "parti-
tioned-file parallel" (PFPR). Both of these require that the FieldView user is licensed for parallel oper-
ation.

Grid-Parallel Data Readers
Grid parallelization is for data that is organized (in the data file, or by the data reader) into FieldView
grids, all of which are stored together in a single grid file or database. These can be structured grids or
unstructured grids.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 388

Table of ContentsIndex

In grid parallelization, FieldView assigns different subsets of the grids to different parallel processes
(different worker server processes inside a FieldView parallel server). In this way, the work of reading
and post-processing the data is distributed and load-balanced.

FieldView data readers are divided into a "query" phase (which returns certain summary information
such as the number of nodes in each grid), and a "data read" phase which reads one grid at a time (the
grid number is supplied to the data read phase). In order to perform grid parallelization, a data reader
must be able to read a subset of the grids in a dataset. These grids will be in ascending order, but
there will be gaps. For example, the data read phase may be asked to read grid 3 (skipping over grids
1 and 2), then grid 5, and then grid 9.

If your data reader supports reading selected grids like this, you can enable grid parallelization by set-
ting the FV_GRID_PARALLEL_READER option as described in register_data_readers.c and
ftn_register_data_readers.f.

If your data reader is slow to skip over grids (such as having to read significant portions of grid 4 in
order to skip from grid 3 to grid 5), then you may not get any parallel speed-up during the grid read
phase. However, you should still get parallel speed-up during many post-processing operations, such
as creating surfaces.

The query phase is called on all parallel (worker) processes (although this may change in a future ver-
sion of FieldView). Therefore, if your query phase is slow, you may not get any parallel speed-up
during your data read. However, you should still get parallel speed-up during many post-processing
operations.

Certain features of user-defined readers are not supported; see the section Features Unsupported in
Parallel Data Readers.

Partitioned-File Parallel Data Readers
Partitioned-file parallelization is for datasets that are split into "partition files", each of which contains a
subset of the entire dataset. For example, a parallel solver may split the dataset into partitions, assign
a partition to each sub-process in the solver, and then write each partition into a separate file.

In partitioned-file parallelization, FieldView assigns each partition to a different parallel process (a dif-
ferent worker process inside the FieldView parallel server). The assignment of partitions to server
processes is controlled by a "layout" file, which is simply a text file that lists the partition files and which
host machines should process each partition. The format of the layout file is described under Descrip-
tion of Layout File Format in Chapter 1 of this Reference Manual.

Unlike grid-file parallelization, all user-defined data readers automatically support partitioned-file paral-
lelization. There is no need to set any special data reader registration options. However, certain fea-
tures of user-defined readers are not supported; see the section Features Unsupported in Parallel
Data Readers.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 389

Table of ContentsIndex

Each FieldView server worker process only sees the single partition assigned to that process, so it
behaves like an ordinary non-parallel data reader. The extra work of splitting or merging the opera-
tions on the dataset is done automatically by FieldView using the information in the layout file.

There are restrictions on the partition files. All of the partition files in a single dataset must have the
same variable names (including boundary variable names if these are present). However, the partition
files can have different boundary types; the boundary types will be automatically merged by Field-
View.

Partioned-file parallel does not support grid subsetting by the user during the data read. If the reader
has enabled this, it is forced off.

There are no special requirements for efficiency. However, if all of the partition files are located in the
same filesystem, then parallel speed-up during data reads can be hurt by competition for access to the
filesystem.

Features Unsupported in Parallel Data Readers
The following features are not supported for grid-parallel or partitioned-file parallel data readers.

The following functions cannot be called from inside a parallel data reader:

fetch_element
fetch_element_ex
ftn_fetch_element
ftn_fetch_element_ex

If they are called from a parallel data reader, they will return an error code (-1 for failure, instead of 0
for success). These functions can be called from inside user-defined functions (parallel or not), just
not from parallel data readers. Grid numbers inside each parallel process are local to that process;
they are not the same as the grid numbers seen in the FieldView user interface. The grid number
passed as an input argument to the user-defined functions is this kind of localized grid number. How-
ever, you can pass this localized grid number to the fetch_element family of functions, and they
will return correct values for the grid. Be careful about using this grid number for anything except call-
ing the fetch_element family.

Temporary region files created by the data reader are not supported. Therefore, if a parallel data
reader calls:

open_tmp_fvreg
ftn_open_tmp_fvreg

then these functions will return an error code (-1 for failure, instead of 0 for success).

Parallel data readers, including the PLOT3D and FieldView Unstructured readers provided with Field-
View, do not support the following FieldView features:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Chapter 9 Building FieldView Plugins 390

Table of ContentsIndex

DataGuideTM (supported for partitioned-file parallel, but not for grid-parallel)
Dataset Sampling
Create Wall Boundaries
Create Exterior Boundaries

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix A 391

Table of ContentsIndex

Appendix A Built-In Functions

Geometric Functions
X
Y
Z
Rcyl:(X^2+Y^2)^.5
Theta: atan(Y/X)
Rsphere: (X^2+Y^2+Z^2)^.5
Phi: acos(z/Rsphere)
(X^2+Z^2)^.5
atan(Z/X)
(Y^2+Z^2)^.5
atan(Y/Z)
I
J
K
IBLANK

Scalar Functions Available with PLOT3D Q Files

Note: All functions defined using the PLOT3D equations are appended with "[PLOT3D]"

Menu Name Full Name
Density (Q1)
Normalized density [PLOT3D]
Stagnation density [PLOT3D]
Norm. stag. density [PLOT3D] Normalized stagnation density
Log (norm. density) [PLOT3D] Log (normalized density)
Pressure [PLOT3D]
Norm. pressure [PLOT3D] Normalized temperature
Stagnation press. [PLOT3D] Stagnation pressure
Norm. stag. press. [PLOT3D] Normalized stagnation pressure
Cp [PLOT3D] Pressure Coefficient
Stagnation Cp [PLOT3D] Stagnation Pressure Coefficient
Pitot pressure [PLOT3D]
Pitot press. ratio [PLOT3D] Pitot pressure ratio
Dynamic pressure [PLOT3D]
Log (norm. pressure) [PLOT3D] Log (normal pressure)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix A 392

Table of ContentsIndex

Temperature [PLOT3D]
Norm. temperature [PLOT3D] Normalized temperature
Stag. Temperature [PLOT3D] Stagnation temperature
Norm. stag. temp. [PLOT3D] Normalized stagnation temperature
Log (norm. temp.) [PLOT3D] Log (normalized temperature)Enthalpy
Enthalpy [PLOT3D]
Norm. enthalpy [PLOT3D] Normalized enthalpy
Stag. Enthalpy [PLOT3D] Stagnation enthalpy

Norm. stag. enthalpy [PLOT3D] Normalized stagnation enthalpy
(Internal) energy [PLOT3D]
Norm. int. energy [PLOT3D] Normalized internal energy
Stagnation energy [PLOT3D]
Norm. stag. Energy [PLOT3D] Normalization stagnation energy
Kinetic energy [PLOT3D]
Norm. kin. Energy [PLOT3D] Normalized kinetic energy
u-velocity [PLOT3D]
v-velocity [PLOT3D]
w-velocity [PLOT3D]
Velocity Magnitude [PLOT3D]
Mach number [PLOT3D]
Speed of sound [PLOT3D]
Cross flow velocity [PLOT3D]
Div. of velocity [PLOT3D] Divergence of velocity
x-momentum (Q2)
y-momentum (Q3)
z-momentum (Q4)
Stag. energy (Q5) Stagnation energy (Q5) (per unit volume)
Entropy [PLOT3D]
Entropy measure s1 [PLOT3D]
vorticity (x-dir) [PLOT3D]
vorticity (y-dir) [PLOT3D]
vorticity (z-dir) [PLOT3D]
Vorticity Magnitude [PLOT3D]
Swirl [PLOT3D]
Vel. x Vort. mag. [PLOT3D]. Velocity x Vorticity magnitude
Helicity density [PLOT3D]
Relative helicity [PLOT3D]
Filter. rel. helicity [PLOT3D] Filtered relative helicity
Shock function [PLOT3D]
Filter. shock func. [PLOT3D] Filtered shock function
Press. gradient mag. [PLOT3D] Pressure gradient magnitude
Dens. gradient mag. [PLOT3D] Density gradient magnitude

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix A 393

Table of ContentsIndex

Vector Functions Available with PLOT3D Q Files

Menu Name Full Name
Velocity Vectors [PLOT3D]
Vorticity Vectors [PLOT3D]
Momentum Vectors [PLOT3D]
Pert. vel. Vectors [PLOT3D] Perturbation Velocity Vectors
Vel. x Vort. Vectors [PLOT3D] Velocity x Vorticity Vectors
Press. grad. Vectors [PLOT3D] Pressure gradient Vectors
Dens. grad. Vectors [PLOT3D] Density gradient Vectors

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 394

Table of ContentsIndex

Appendix B PLOT3D Formats

Introduction
PLOT3D supports four types of formats: Formatted, Unformatted, Double Precision (DP) Unformatted
and Binary. Formatted files are simple ASCII text files that can be read and written using either FOR-
TRAN or C. Unformatted files can only be read or written using FORTRAN, provided that the OPEN
statement contains the argument FORM=UNFORMATTED. Unformatted files store floating point data in
single precision (32 bit). DP Unformatted files are unformatted files that store floating point data in
double precision (64 bit) and integer data in single precision. Binary files can only be written and read
using C . SGI machines support writing and reading binary files in FORTRAN using the FORM=SYS-
TEM option on the open statement.

Formatted, Binary, Unformatted and DP Unformatted files generated on UNIX machines are readable
on Windows and LINUX machines and visa-versa. Byte-swapping (when it is necessary) is done auto-
matically.

For transient data, each time step is stored in a separate file. The file name must have a time step
number embedded in it using a naming convention described in Transient Data.

The following subroutines show how to write out PLOT3D unformatted files. To change these to write
formatted files, change (IUNIT) to (IUNIT,*).

Note: All Unformatted and Binary files must have floating point and integer values in single
precision in order for FieldView to be able to correctly read in the files. DP Unformatted files
must have floating point values stored in double precision and integer values stored in single
precision in order for FieldView to be able to correctly read in the files.

Face Data and PLOT3D Format
FieldView supports face-based results on boundary surfaces of PLOT3D data. In order to provide
face results for a PLOT3D dataset, three additional files will need to be created. One is a 2D Function
File, which contains the face results for those boundary surfaces that have them. This file is described
in the Function Files section of this appendix, below. In addition, a Function Name file which commu-
nicates the names of the face result variables to FieldView is needed, and described in the next
appendix. The last required file is a special form of the Structured Boundary file (*.fvbnd) which
communicates the boundary surface definitions, the surface normal direction, and whether there are
face results for each of the boundary surfaces. The format that accommodates this is described in
Appendix H of this Reference Manual.

Warning: When using UNFORMATTED statements, each line of information must be written
with a single WRITE statement, as shown. That is, you cannot write out all X values with
one WRITE statement, all Y values with a different WRITE statement, and all Z values
with a third WRITE statement.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 395

Table of ContentsIndex

Grid XYZ Files
The grid file (XYZ file) defines the coordinates of the grid points in the structured mesh. The points are
stored in I, J, K order with all of the X coordinates stored first, the Y coordinates second, and the
Z coordinates last. If the file contains IBlank information, it is stored after the Z coordinates. See the
section on IBlank Usage for additional details.

XYZ_File Single_Grid

 WRITE(IUNIT)IDIM,JDIM,KDIM
 WRITE(IUNIT)(((X (I, J, K), I=1, IDIM), J=1, JDIM), K=1, KDIM),
 & (((Y (I, J, K), I=1, IDIM), J=1, JDIM), K=1, KDIM),
 & (((Z (I, J, K), I=1, IDIM), J=1, JDIM), K=1, KDIM)

XYZ_File Single_Grid with IBlank

 WRITE(IUNIT)IDIM,JDIM,KDIM
 WRITE(IUNIT)(((X (I, J, K), I=1, IDIM), J=1, JDIM), K=1, KDIM),
 & (((Y (I, J, K), I=1, IDIM), J=1, JDIM), K=1, KDIM),
 & (((Z (I, J, K), I=1, IDIM), J=1, JDIM), K=1, KDIM),
 & (((IBLANK (I, J, K), I=1, IDIM), J=1, JDIM), K=1, KDIM)

XYZ_File with Multiple_Grid

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID),KDIM(IGRID),IGRID=1,NGRID)
 DO 10 IGRID = 1, NGRID
 WRITE (IUNIT)
 & (((X(I,J,K),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),K=1,KDIM(IGRID)),
 & (((Y(I,J,K),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),K=1,KDIM(IGRID)),
 & (((Z(I,J,K),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),K=1,KDIM(IGRID))
 10 CONTINUE

Note: In the above WRITE statements for the grid information, "X", "Y" and "Z" stand for
the particular arrays that hold the XYZ values for the Nth grid.

XYZ_File with Multiple_Grid and IBlank

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID),KDIM(IGRID),IGRID=1,NGRID)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 396

Table of ContentsIndex

 DO 10 IGRID = 1, NGRID
 WRITE (IUNIT)
 & (((X(I,J,K),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),K=1,KDIM(IGRID)),
 & (((Y(I,J,K),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),K=1,KDIM(IGRID)),
 & (((Z(I,J,K),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),K=1,KDIM(IGRID)),
 & (((IBLANK(I,J,K),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),K=1,KDIM(IGRID))
 10 CONTINUE

Note: In the above WRITE statements for the grid information, "X", "Y" and "Z" stand for
the particular arrays that hold the XYZ values for the Nth grid.

2D - XYZ_File Single_Grid

 WRITE(IUNIT)IDIM,JDIM
 WRITE(IUNIT)((X(I, J),I=1,IDIM),J=1,JDIM),
 & ((Y(I,J),I=1,IDIM),J=1,JDIM)

2D - XYZ_File Single_Grid with IBlank

 WRITE(IUNIT)IDIM,JDIM
 WRITE(IUNIT)(((X(I,J),I=1,IDIM),J=1,JDIM),
 & (((Y(I,J),I=1,IDIM),J=1,JDIM),
 & (((IBLANK(I,J),I=1,IDIM),J=1,JDIM)

2D - XYZ_File Multiple_Grid

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID)IGRID=1,NGRID)
 DO 10 IGRID = 1,NGRID
 WRITE (IUNIT)
 & ((X(I,J),I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),
 & ((Y(I,J),I=1,IDIM(IGRID)),J=1,JDIM(IGRID))
 10 CONTINUE

Note: In the above WRITE statements for the grid information, "X", "Y" and "Z" stand for
the particular arrays that hold the XYZ values for the Nth grid.

2D - XYZ_File with Multiple_Grid and IBlank

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 397

Table of ContentsIndex

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID),IGRID=1,NGRID)
 DO 10 IGRID = 1,NGRID
 WRITE(IUNIT)
 & (((X(I,J),I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),
 & (((Y(I,J),I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),
 & (((IBLANK(I,J),I=1,IDIM(IGRID)),J=1,JDIM(IGRID))
 10 CONTINUE

Note: In the above WRITE statements for the grid information, "X", "Y" and "Z" stand for
the particular arrays that hold the XYZ values for the Nth grid.

Note: All Unformatted and Binary files must have floating point and integer values in single
precision in order for FieldView to be able to correctly read in the files. DP Unformatted files

must have floating point values stored in double precision and integer values stored in single precision
in order for FieldView to be able to correctly read in the files.

Solution Q Files
The PLOT3D Q files contain flow quantities for the grid points defined in XYZ files. In order to prop-
erly use the PLOT3D functions, the variables in the Q file must be properly normalized. The free-
stream density is assumed to be 1. So, the Density (Q1) has been divided by the free-stream
density. Similarly, the free-stream speed of sound set equal to 1. Thus, Momentum (Q2,Q3,Q4) is
divided by free-stream density and free-stream speed of sound.

The free-stream velocity magnitude can be calculated from the free-stream Mach number, FSMACH.
The direction of the free-stream velocity is computed from the angle of attack, ALPHA (in degrees).
(The angle of attack is currently used only in the computation of the Perturbation Velocity vectors.)

The other two values, RE and TIME, are not currently used in the PLOT3D functions. The time value
is used for transient data input (see Chapter 14 of Working with FieldView).

In computing the PLOT3D functions, the fluid is assumed to be air, and behave as a perfect gas. The
ratio of specific heats () is assumed to be 1.4 and the gas constant (R) is assumed to be 1.

Values of the ratio of specific heats () and the gas constant (R) can be changed using command line
options when running FieldView. Refer to Chapter 1 of this Reference Manual and Chapter 1 of the
User’s Guide for more information about this feature.

The following subroutines show how to write out PLOT3D unformatted files. To change these to read
in formatted files, change (IUNIT) to (IUNIT,*).

Q_File

Freestream Mach number (FSMACH)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 398

Table of ContentsIndex

Angle of attack (ALPHA)
Reynolds number (RE)
Time (TIME)

Q_File Single_Grid

 WRITE(IUNIT)IDIM,JDIM,KDIM
 WRITE(IUNIT)FSMACH,ALPHA,RE,TIME
 WRITE(IUNIT)((((Q(I,J,K,NX),I=1,IDIM),J=1,JDIM),K=1,KDIM),
 & NX=1,5)

Q_File Multiple_Grid

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID),KDIM(IGRID),IGRID=1,NGRID)
 DO 10 IGRID =1,NGRID
 WRITE(IUNIT)FSMACH,ALPHA,RE,TIME
 WRITE(IUNIT)((((Q(I,J,K,NX),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),
 & K=1, KDIM(IGRID)),NX=1,5)
 10 CONTINUE

2D - Q_File Single_Grid

 WRITE(IUNIT)IDIM,JDIM
 WRITE(IUNIT)FSMACH,ALPHA,RE,TIME
 WRITE(IUNIT)(((Q(I,J,NX),I=1,IDIM),J=1,JDIM),NX=1,4)

2D - Q_File Multiple_Grid

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID),IGRID=1,NGRID)
 DO 10 IGRID = 1,NGRID
 WRITE(IUNIT)FSMACH,ALPHA,RE,TIME
 WRITE(IUNIT)(((Q(I,J,K,NX),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),NX=1,4)
 10 CONTINUE

Note: All Unformatted and Binary files must have floating point and integer values in single
precision in order for FieldView to be able to correctly read in the files. DP Unformatted files
must have floating point values stored in double precision and integer values stored in single
precision in order for FieldView to be able to correctly read in the files.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 399

Table of ContentsIndex

Function Files
The Function Files contain a list of variables on the mesh defined in the grid file. These quantities are
stored in I, J, K order with the names of the variables being defined in the Function Name File (see
Appendix C of this Reference Manual). Function Files may be used instead of, or in conjunction with
Q files.

The following subroutines show how to write out PLOT3D unformatted files. To change these to read
in formatted files, change (IUNIT) to (IUNIT,*).

Function_File Single_Grid

 WRITE(IUNIT)IDIM,JDIM,KDIM,NVAR
 WRITE(IUNIT)((((F(I,J,K,NX),I=1,IDIM),
 & J=1,JDIM),K=1,KDIM),NX=1, NVAR)

Function_File Multiple_Grid

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID),KDIM(IGRID),NVAR(IGRID),
 & IGRID=1,NGRID)
 DO 10 IGRID=1,NGRID
 WRITE(IUNIT)((((F(I,J,K,NX),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),K=1,KDIM(IGRID)),
 & NX=1,NVAR(IGRID))
 10 CONTINUE

2D - Function_File Single_Grid

 WRITE(IUNIT)IDIM,JDIM,NVAR
 WRITE(IUNIT)(((F(I,J,NX),I=1,IDIM),J=1,JDIM),NX=1,NVAR)

2D - Function_File Multiple_Grid

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID),NVAR(IGRID),IGRID=1,NGRID)
 DO 10 IGRID=1, NGRID
 WRITE (IUNIT)(((F(I,J,NX),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),NX=1,NVAR(IGRID))
 10 CONTINUE

Note: For any vector field in the Q File, a dummy W component of the vector will automat-
ically be created upon read in, with all of the values set to zero. However, vectors defined in
the Function File must still contain 3 components.

2D - Function_File Multiple_Grid

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 400

Table of ContentsIndex

 WRITE(IUNIT)NGRID
 WRITE(IUNIT)(IDIM(IGRID),JDIM(IGRID),NVAR(IGRID),IGRID=1,NGRID)
 DO 10 IGRID=1, NGRID
 WRITE (IUNIT)(((F(I,J,NX),
 & I=1,IDIM(IGRID)),J=1,JDIM(IGRID)),NX=1,NVAR(IGRID))
 10 CONTINUE

The file format must be multi-grid because each boundary ‘patch’ will need to have its own results
(grid). A boundary surface may consist of faces from several different grids, each grid requiring at
least one entry (and perhaps more) in the Structured Boundary File. An example of this is given in the
Face Data section of Appendix H of this Reference Manual.

Face Data and Function Files
FieldView supports face-based results on boundary surfaces of PLOT3D data. In order to provide
face results for a PLOT3D dataset, one of the additional files needed is a standard 2D Function File
which contains the face results for those boundary surfaces that have them. That is, the face data file
for a 3D dataset is a 2D, not a 3D, file. The Function file should have the same file name as the results
file plus have an additional extension: *.fvsrf. Information about all of the additional files neces-
sary in order to use face data is given in Appendix H of this Reference Manual.

IBlank Usage
IBlanking is a technique which permits definition of walls and holes within a mesh. It can also be used
to allow integration (for streamline calculations) in models with multiple-grids.

The IBlank array, if present in the XYZ file, contains a single integer value per grid point. If one grid
has IBlank values defined, then all grids in a multi-grid model must have IBlank values. Recognized
values are:

0 = a point not in the computational domain (a hole), to be ignored in processing grids and
results. This is typically used for non-fluid regions.

1 = an ordinary grid point.
2 = a wall point. Integration in the Streamlines panel is forced away from walls (grid cell

faces which have IBLANK = 2 on all vertices), by limiting velocity and position very near the wall.
Negative = negative IBlank values are used by the integration procedure in the Streamlines

panel as grid pointers to allow the integration to continue from one grid to another. If this value is not
set, it is still possible to have the integration continue across grids (see the Chapter 6 of Working with
FieldView for more information).

In order to alert FieldView that you want to integrate through both grids, you must set the IBlanking to
be negative in those common areas. The negative (-) sign indicates to FieldView that it should try to
integrate to another grid. The number following the negative (-) sign tells the software which grid to
integrate into.

If grid M and grid N have a joining boundary, you would set the IBlank of grid M to -N at the bound-
ary. This tells grid M to integrate across boundaries into the N grid. In addition, you must also set

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 401

Table of ContentsIndex

the IBlank of grid N to -M at the boundary. This tells grid N to integrate across boundaries into the
M grid.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 402

Table of ContentsIndex

PLOT3D

These buttons indicate whether
the input data contains Multiple
Grids or IBlanks. The default is
off for both options.

When the data is read
in, it may either Replace
the data currently in
memory or be
Appended to the current
data.

This area is used to specify
whether the PLOT3D file to be
read is in the 2D or 3D format.

File Format is used to specify
the format of the input data. The
supported formats are: Format-
ted, FORTRAN Unformatted,
Double Precision FORTRAN
Unformatted and Binary.

By pressing Merge Series, a series of 2D files (or
3D files with one of the dimensions equal to 1)
may be read in as time steps of a solution. The
files will be appended together in the K dimen-
sion (or in the dimension that is equal to 1, for 3D
solutions).

The Data Type of each input file
must be specified. The files may
either be standard PLOT3D Grid
files (XYZ), Results files (Q) or
Function Files (which allows for
any number of input variables).
Pressing one of these Data read
buttons will bring up a file
selector.

 Figure 141 PLOT3D Data Input Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 403

Table of ContentsIndex

PLOT3D Constants
The PLOT3D equations which are functions of the Q (solution) vector (such as Temperature
[PLOT3D], Enthalpy [PLOT3D], etc.) are computed with the assumptions of (gamma) and R
(gas constant) as constants equal to 1.4 and 1.0, respectively. For those users who have Q files
resulting from solutions involving perfect gases (but not necessarily air), the internal value of these two
constants can be changed so that the PLOT3D functions calculated will be correct. That is, if you have
a solution where the gas is pure N2 (with = 1.2), you can enter in this value for gamma and adjust
the gas constant, R, appropriately so that the PLOT3D functions that are available in the Function
Specification panel are valid.

Acceptable values of these constants are: > 1 and R > 0.0. In order to change the internal val-
ues of the gas constant (R) and gamma (), command line switches will have to be used. The com-
mand line switches are:

-gasconstant value
and

-gamma value

Please refer to Chapter 1 of the User’s Guide for more information about how to apply these values.

Note: These constants (and R), will be written into DataGuideTM files. For more informa-
tion on the impact of this on DataGuideTM processing, see Chapter 1 of the User’s Guide.

Using the PLOT3D Data File Input Panel
What are the steps for reading in a PLOT3D file?
To read in a PLOT3D file, you must first read in an XYZ file (grid file) and then a results file (either Q
or Function). Since the PLOT3D format does not contain any flags indicating the type of file, you must
specify if the file is Formatted, Unformatted, Binary, or DP Unformatted , whether it is in 2D or 3D for-
mat, and whether it contains Multiple grids and IBlanks.

After the XYZ file is selected, you will be presented with the grid subset selection menu (see Figure
142). This menu gives you the option of selecting only certain grids to read in, or allows you to skip
grids points on input. This second option will increase performance on smaller machines.

After selecting a Function file and pressing OK, you will be given the Function Name Input panel (Fig-
ure 143). This allows you to input a file containing the names of the variables in the Function file. If
you do not have such a file, you can simply press the Use Defaults button. A detailed description of
the name file is given in Appendix C of this Reference Manual.

What is the difference between XYZ, Q, and Function Files?
An XYZ file defines the grid itself. It contains all of the grid points and their associated X, Y, and Z
coordinates. A Q file is a standard PLOT3D file that contains several constants and the 5 specially
non-dimensional variables: density (Q1), 3 momentum components (Q2, Q3, Q4) and stagnation

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 404

Table of ContentsIndex

energy (Q5). A function file is similar to a Q file but can contain as many variables as desired, with
specific names.

Can I give specific names to my functions in a Function File?
The Function name file is used to give names to each of the variables found in the Function file. For
more information of the Function Name File, see Appendix C of this Reference Manual.

Can I use a Q and Function File Together?
Both Q and Function files may be used together or independently.

Can I read in Q or Function Files in any order?
No. The only method which gives the desired result is to read Grid1, Results1, Grid2,
Results2, etc. Any other ordering will not function.

What is the difference between Formatted, Unformatted and Binary files?
Formatted files are simple ASCII text files that can be read and written using either FORTRAN or C.
Unformatted files can only be read or written using FORTRAN, provided that the OPEN statement
contains the argument FORM=UNFORMATTED. Binary files can only be read using C (although some
machines support reading binary files in FORTRAN using the FORM=BINARY option on the OPEN
statement).

What are IBlanks?
For a complete description of IBlanks, please see the IBlank section earlier in this appendix.

How can I get a list of files with a certain extension (or prefix)?
Using the File filter you can get a list of files with a certain extension (or prefix). To do this, simply type
in the part of the file that you would like, using a wildcard for the rest of the file name, and either per-
form a carriage return (hit the Enter key on keyboard), or press the filter button. For example, to find all
files that end in .bin, you would type: *.bin.

What about 3D transient data?
The Merge Series option (see below) should not be used for true 3D transient data. Instead, you
should simply select one of the files for input. If the proper naming conventions have been followed
(see Chapter 1 of this Reference Manual), FieldView will determine that a set of transient data has
been selected, and give you the choice of reading in only one time step, or using the transient options.
If you select the transient option, the Transient Data Controls panel will become active. For informa-
tion on how to read in a set of transient PLOT3D data, see Chapter 1 of this Reference Manual. For
information on how to use the Transient Data Controls panel, see Chapter 14 of Working with Field-
View.

How can I read in a series of 2D time-dependent files?
A group of 2D files may be read in to FieldView in order to display a time series. These files must be
either 3D (with one of the I, J, or K dimensions equal to 1), or 2D. The files must have the same
prefix and suffix, with only the step number being changed. For example, if time step 1 is called
test001.bin, all the other time steps must have a name of the form test###.bin, where "###"
indicates the numbering of the files.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 405

Table of ContentsIndex

To read in the time series, you will need to turn on the Merge Series button, and then use the PLOT3D
panel as described above. Next, select any one of the XYZ files from the list. You will then be pre-
sented with the Merge Series File Selection panel. This panel will list all files with the same prefix and
suffix as defined above. You may then choose which of the files you wish to read in. You will be pre-
sented with the same panel upon reading in your solution file, and should make sure to select the
same group of time steps as you did when reading the grid file. See Chapter 1, and the end of this
appendix of this Reference Manual for more information.

After responding to the Merge Series File Selection panel, you will be presented with the Grid Subset
Selection panel and may proceed as usual.

How can I display my series once it has been read?
Upon reading in a group of files to show a series, FieldView will append all of these datasets together
in memory. The data will be appended in the K dimension, for 2D datasets, or in the dimension that is
equal to 1, for 3D datasets. For example, if you read in 10 time steps of a problem that is 20 x 40,
FieldView will set I = 20, J = 40 and K = 10. If, on the other hand, the 10 time steps were for
a grid defined to be 30 x 1 x 40, the I, J and K dimensions would be 30, 10, and 40 respec-
tively.

To display the series, press the Create button on the Computational Surface panel. The default sur-
face will be the dimension that was used for the time series. This would be a K surface for the first
problem described above, and a J surface for the second. When you then press the Sweep button
on the Computation Surface panel, the surface will be moved through the time steps. For example, in
the first problem K = 1 would be time step 1, K = 2 would be time step 2, etc.

What if I have a single grid file but a different results file for each dataset?
FieldView supports the reading of multiple grid and solution files to show a series of steps. If you only
have one grid file but multiple results files, FieldView will match up the single grid file with the set of
time-dependent results files.

Possible Problems:
Because PLOT3D data files have no internal type tags and there are no naming conventions, the user
must know what the format is for each dataset and whether or not it has Multi-Grids or IBlanks. See
Data Input Constraints below.

Data Input Constraints:
XYZ data for a given grid must be read before results data for the same grid. You will get an error
message if you try to read results data for a grid which has no XYZ data yet.

Each of the results files must have the same number of grids as the corresponding XYZ file, and the
grids must be the same size in the results file and the XYZ file.

FieldView attempts to detect mismatches between the settings for File Format, Data Type, Data For-
mat and the data in the file, as best it can given the limitations of the PLOT3D formats. Many such
mismatches cannot be detected; it is the user's responsibility to know the correct settings for each file.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 406

Table of ContentsIndex

The Data Restart file will reproduce the input subsetting chosen by the user. However, Computational
Surface, Iso-Surface or Streamlines Restart files that were created with a particular input subsetting
may not be usable with a Data Restart file or data which has a different input subsetting. Old restarts
may be unusable, but more recent restarts are more flexible and an attempt is made to create the sur-
face in question. See the section Restart Flexibility in Chapter 5 of this Reference Manual.

Grid File Input
Every time an XYZ file is read (whether in Replace or Append mode), the file header will be read. If
no errors are detected, the Grid Subset Selection sub-panel will appear. This sub-panel can be used
to reduce the amount of data to read by selecting from the total number of grids and the total number
of points. This can be done to enhance performance or to focus the visualization to certain areas.

This status line shows the number
of grids selected and the total
available.

This status line shows the number
of points selected and the total
available. The selected number is
affected by the Point Increment:
setting and grid subsetting.

Press OK when the information in
the panel is correct. The file will be
read in and the sub-panel will be
exited.

This list box displays the num-
bered grids and the dimensions
of each grid and will have a
scrollable list of grids if the
amount of grids exceed the dis-
play window. All grids will ini-
tially be selected (highlighted).
Clicking on a selected grid will
cause it to be deselected
(unhighlighted).

By clicking on the arrows, or
typing directly into the field, the
point increment value can be
changed to read a subset of
the data.

 Figure 142 Grid File Input Panel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 407

Table of ContentsIndex

Using the Grid File Input Panel
How can I select the grids I want to read?
When a grid file has been selected, a list of all of the grids, and their dimensions, will appear in the grid
area of this panel. All of the grids will be selected by default (highlighted). To turn off a grid for read in,
simply click the mouse on the grid you do not want to read in. Once this decision has been made,
press the OK button at the bottom of the panel.

How can I read in a subset of my data?
By changing the Point Increment, FieldView will read in a subset of the data. For example, setting the
Point Increment to 2 will cause every other grid point in each direction to be read in. This will result in
1/8th of the total data being read in.

Why are the FieldView grid numbers different than my input data?
If you use the Grid File Input panel to skip some of your grids, the grid will be re-numbered so that if
grid 2 is skipped, then grid 3 becomes grid 2.

Why are the FieldView point numbers different than my input data?
If you use the Grid File Input panel to eliminate some of your grid points, IJK values will be re-num-
bered so that if Point Increment = 2, then I = 5 becomes I = 3. If Point Increment = 2, then
only odd IJK values are read. This means if the I values in the XYZ file go from 1 to 40, then
the original maximum value (I = 40) will not be read.

Function File and Function Name File Input
The FieldView Function File, as described earlier in this appendix, contains PLOT3D results. The
names of the functions need to be communicated to FieldView through use of the Function Name file.
When a Function File is selected for read-in, FieldView will prompt you to select a Function Name file.
This file is used to define scalar and vector function names for the variables in the Function files. A
Function Name file is required to have the extension .nam. See Appendix C of this Reference Man-
ual for a description of the format. If you wish to read a Function file without supplying names for the
variables, the system will supply default names if you select Use Defaults described below.

This sub-panel will appear every time a Function file is read.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 408

Table of ContentsIndex

Function Name Mismatch
Function Name files that contain a different number of entries than the corresponding Function File can
be used, but a Warning pop-up is first issued.

After OK is pressed, the mismatch panel is brought up giving you several options:

By pressing Use Generic Function Names, the Function Name file will be ignored and
the entry will be cleared. The Functions will be listed as the letter F followed by a
number for as many functions in the Function File. A Function File with ten functions
will be listed as F1 through F10. Note that no vectors will be created.

 Figure 143 Function Name Input Panel

 Figure 144 Function Name Warning

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 409

Table of ContentsIndex

Merge Series File Selection
The Merge Series is a special type of transient PLOT3D solution. Normally, transient data is handled
by reading in one of the files of the series into memory at a time, with FieldView keeping an internal list
of the transient filenames for reference. Different time steps are accessed through the Transient Data
Controls panel (see Chapter 14 of Working with FieldView for details). Merge Series is also dis-
cussed in Chapter 1 of this Reference Manual.

It is possible to read in an entire transient dataset and have access to any particular time step for a
particular type of data. The files must be either 2D or a special form of 3D data - with one of the I, J,
or K dimensions equal to 1. In either case, the K dimension (in the case of 2D data), or the "1"
dimension (in the case of this special type of 3D data) will contain the number of time steps. Sweeping
this dimension will be the same as doing a transient sweep.

Example:
You have a transient series of 2D data where the grid is 21x50. After reading into FieldView as a
Merge Series solution (see below), the Computational Surface panel will show that I ranges from
1 to 21, J ranges from 1 to 50, and K will range from 1 to N, where N is the number of files
that make up the transient series.

Example:

 Figure 145 Function Name Mismatch Panel

By pressing Use Names when
too few names are found, the
remaining functions will be
named using the default names
(the letter F followed by the line
number). If too many names are
found, the Name file will be used
for the available functions and
the remaining names will be dis-
carded.

By pressing Use Defaults, the
system will ignore the Function
Name file and the Function
Names list will be numbered as
F1 through Fn, where n is the
number of functions in the Func-
tion File. Default names do not
include any vector function defi-
nitions.

Pressing Cancel will abort the
operation. The Function Name
file will not be read and the pop-
up will be removed.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix B 410

Table of ContentsIndex

You have a transient series of 3D data where the grid is 33x1x70. After reading into FieldView as
a Merge Series solution (see below), the Computational Surface panel will show that I ranges
from 1 to 33, J ranges from 1 to N, where N is the number of files that make up the transient
series, and K will range from 1 to 70.

The files must have the same prefix and suffix, with only the step number being changed. For exam-
ple, if time step 1 is called test001.bin, all the other time steps must have a name of the form
test###.bin.

Warning: FieldView will not recognize the series if there are more than one dot (".") in the filename.
For example, test.1020.bin, and files like it, will not be recognized.

When the Merge Series button is turned on, the Merge Series File Selection panel will be presented.
This panel is used to select the files you wish to use as a series. All files with the same prefix and suf-
fix as the selected file will be displayed in this list. Note that using the Merge Series option will append
all of the data together in memory, to allow sweeping through all the data by sweeping in one of the
computational directions.

Note: This option should not be used for true transient data. Instead, simply read in one file of the
transient data, and use the Transient Data Controls panel. See the section on Transient PLOT3D Data
in Chapter 1 of this Reference Manual.

 Figure 146 Merge Series File Selection

This list box contains the
names of all the files with the
same prefix and suffix as the
file selected on the PLOT3D
Data Input panel. Any file in
this window can be selected or
unselected by clicking on it
with M1.

Press Select All to select
(highlight) all the files.

Press OK when the informa-
tion in the panel is correct.
The files will be read in and
the sub-panel will be exited.

Press Unselect All to deselect
(unhighlight) all the files.

Press Cancel and the files
will not be read and the sub-
panel will be exited.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix C 411

Table of ContentsIndex

Appendix C Function File Name Format
Function Name files specify scalar and vector function names for the variables in the Function files.

File Naming Convention
The general form for the Function Name file is:

file_name.extension

The first part of the filename may contain up to 255 alpha characters, numbers, or underscores (Note:
spaces are not permitted), although it is suggested that the user limit the filename portion to 22 charac-
ters so that the entire name will be visible in the function selection list. The portion of the filename des-
ignated as the extension is used to identify the type of the file. In this case the required extension is
.nam.

File Format
The Function Name file is an ASCII text file. Each line contains a scalar variable name. Vector vari-
ables are defined by adding a semi-colon and the name of a vector function after a scalar variable
name. The components of this vector are defined by the scalar variable on the same line, together
with the scalar variables on the next two lines.

Example:
The following shows the contents of a typical Function Name file:

pressure
u-velocity; velocity
v-velocity
w-velocity
kinetic energy

This file, since it has five lines, supplies names for five variables per grid point. The first variable in a
Function File will be assigned the name pressure, and so forth. Since there is a semicolon on the
second line, the name after the semicolon will be used to define a vector function called velocity.
Since this vector function begins on the second line, the vector function components include the sec-
ond variable (u-velocity) and the variables on the next two lines (v-velocity, w-velocity).

Face Data and Function Name Files
FieldView supports face-based results on boundary surfaces of PLOT3D data. In order to provide
face results for a 3D dataset, one of the additional files needed is a standard 2D Function File which
contains the face results for those boundary surfaces that have them. In order to communicate the
names of the face data functions to FieldView, a Function Name file needs to be used. Details on the
implementation of the additional files needed for face data is contained in Appendix H of this Refer-
ence Manual.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix C 412

Table of ContentsIndex

Error Conditions
A vector name not followed by at least two more lines in the name file will result in an error. FieldView
will issue a pop-up message and the vector name will not be used and the vector will not be created.
No data will be read. The user will have to designate a different Function Name file or Use Defaults
(which will cause the functions to have the names: F1, F2, … , FN).

If a vector name is defined, another vector name (another semicolon) cannot appear on either of the
next two lines in the name file. In other words, overlapping vector definitions are not allowed.

The user is warned if the number of Function Name entries does not correspond to the number of vari-
ables in the Function File. Pop-ups will prompt the user for a course of action, either to use default
names (F1, etc.), or to use the Function Name file. If the (incomplete) Function Name File is used, it
will be padded by default names. That is, if the Name file contains 10 names but the Function file con-
tains 12 functions, the 10 names will be used + F11 and F12.

Blank names will give an error. Either a different Name file will need to be indicated or the default func-
tion names will be used.

Although the PLOT3D Function File format allows different numbers of variables on each grid, this is
not allowed. FieldView validates the file before proceeding.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 413

Table of ContentsIndex

Appendix D Unstructured Grid Format

General Remarks on Unstructured Data Format

Introductory note
FieldView has a reader for an unstructured file format: FV-UNS. This appendix describes how to cre-
ate data files that can be read using this reader. Using this file format, you can specify and describe:

1. 3D elements (or cells) including convex arbitrary polyhedrons
2. Multiple grids (or blocks) containing groups of 3D elements or cells
3. Groups of grids (or blocks) defining regions
4. 2D elements (or faces) including arbitrary polygons
5. Surfaces containing groups of 2D elements (or faces), called boundary types
6. Nodal based data for nodes within the volume and on surfaces
7. Surface based results, restricted to boundary types, for face-based data
8. Dataset specific constants for Time, Reynolds No, Free Stream Mach No. and Angle of Attack

Specifically, the format permits you to create files which can contain 1) the grid only, 2) the results only
or 3) the combined grid and results file. The current file format version is designated as 3.0. Note that
all FV-UNS files based on version 2.7 and earlier can still be read into FieldView; there is no need to
make changes to existing FV-UNS files as the reader is backward compatible.

The arbitrary polyhedron support was introduced in FieldView 9.0 (FV-UNS file version 3.0). The sup-
port for arbitrary polyhedrons was expanded in FieldView 12.0 to allow non-convex polyhedrons, if
they do not have center nodes or hanging face nodes. The FieldView-Unstructured-split file format
(grid info and results info are stored in different files) was introduced in FieldView 8.2 (FV-UNS file ver-
sion 2.7). The FieldView-Unstructured-combined grid and results file pre-dates FieldView 8.2
release.

The FieldView-Unstructured-split file format permits separation of the grid and result information into
different files. For transient simulations in which the grid is invariant (that is, does not change with
time), the FieldView-Unstructured-split file format will provide a significant savings in terms of disk
space, since the grid does not need to be written with the results for each time step. This format can
also be used for a series of datasets that are based on the same grid, but are run at differing boundary
conditions. The user must explicitly state whether the FV-UNS file contains either grid information,
results information or a combination of grid and results data. Unstructured Data Input panel on page
503 of this appendix provides additional instruction on reading FV-UNS files into FieldView.

Both FieldView-Unstructured-split format and FieldView-Unstructured-combined file formats allow for
specifying arbitrary polyhedron elements and arbitrary polygon faces (see Arbitrary Polyhedron
Cells on page 417), as well as four standard element types (hexahedron, tetrahedron, prism and pyr-
amid) described in Standard 3D element types on page 415 of this appendix.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 414

Table of ContentsIndex

The FV-UNS reader can accommodate 3 different file types: Binary, Fortran Unformatted and ASCII.
The content of the Binary and Unformatted files is identical, except that the Fortran Unformatted files
are organized as a series of Fortran records (one record per Fortran READ or WRITE). The record
structure means that data in Unformatted files must be written with exactly the required Fortran WRITE
statements, while the data in Binary files can be written any number of words at a time.

Note: Some Fortran compilers can write Binary files using a special option in the Fortran OPEN state-
ment, such as FORM="BINARY". Check your compiler documentation to see if your Fortran compiler
supports this. Also, some Fortran compilers write Unformatted files using an internal format not sup-
ported by FieldView. In particular, 64-bit g77 and some versions of 64-bit gfortran use a special 64-bit
record structure that is not compatible with 32-bit g77 and gfortran, and is not supported by FieldView.

Note that the ASCII file content differs from the Binary/Unformatted files. Consequently some care
and planning should be exercised when attempting to change from one type to the other. ASCII files
are also slower to read into FieldView than Binary or Unformatted files. Information about creating
Binary or Unformatted FV-UNS data with FORTRAN 77 can be found in Creating FV-UNS files with
FORTRAN 77 and C for different OS on page 504 of this appendix. The FV-UNS reader automati-
cally determines the type of file being read. No byte-swapping is needed for reading FV-UNS files cre-
ated on a different platform.

The data within FV-UNS files pertaining to both the grid and results must be single precision (4 byte
integers or floats). There is currently no support for double precision (8 byte integers or floats). For
the case of Binary and Unformatted types, FieldView will fail to read the files if any numbers are writ-
ten using the double precision format. For the case of ASCII files, the double precision format can be
read, however the numbers will be truncated to single precision at the time of being read into Field-
View.

Results are stored on the nodes (at the nodal coordinates). Currently, there is no support for cell cen-
tered data. However, cell centered nodes and variables assigned to these nodes may be used for
arbitrary polyhedral cells. In other words, cell centered data may be brought into FieldView in addition
to vertex based data rather than instead of vertex data.

There is support for face based data for boundary surfaces only. This is described in further detail
below.

Supported Element Types
General Remarks on Supported Element Types
The FV-UNS data format supports the following standard 3D element types: hexahedron, tetrahedron,
prism and pyramid. These elements are described in more detail in Standard 3D element types on
page 415.

In addition to the standard 3D elements, FieldView 9.0 (and above) supports arbitrary polyhedron 3D
elements (cells) that may have cell-centered values and hanging nodes on faces. These elements are
described in more detail in Arbitrary Polyhedron Cells on page 417.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 415

Table of ContentsIndex

The FV-UNS data format supports the following standard 2D element types: quadrilateral and triangle.
In addition to the standard 2D elements, FieldView 9.0 (and above) supports arbitrary polygon 2D ele-
ments (faces). An arbitrary polygon 2D element may have from 3 to 256 vertices. These elements are
described in more detail in Arbitrary Polygon Boundary Faces on page 420.

Generally speaking, quadrilaterals and triangles may be considered as particular cases of arbitrary
polygon faces. Hexahedron, tetrahedron, prism and pyramid may be considered as particular cases of
arbitrary polyhedrons. Therefore, there are two ways to describe these elements in FV-UNS file: as
standard elements, and as arbitrary polyhedrons and arbitrary polygon faces.

In binary and unformatted FV-UNS files standard elements and arbitrary polyhedrons / arbitrary poly-
gon faces are assembled into their own sections within the file. In ASCII FV-UNS files standard ele-
ments and arbitrary polyhedrons / arbitrary polygon faces share the same sections within the file. The
arbitrary polyhedron elements can appear before, after, or in-between standard 3D elements in ASCII
FV-UNS file Elements section. On the other hand, arbitrary polygon faces should always be written
in the end of the ASCII FV-UNS file Boundary Faces section, after all standard 2D elements (faces)
are written. See the full description of binary, unformatted and ASCII FV-UNS formats below for
details.

Standard 3D element types
Four standard 3D element types supported by FieldView are hexahedron, tetrahedron, prism and pyr-
amid. Node numbering and face numbering for these elements is shown in Figure 150 below.

Tetrahedron

Pyramid

 Figure 147 Face/Node numbering for-

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 416

Table of ContentsIndex

Prism

Hexahedron

 Figure 148 Face/Node numbering for Pyramid Cell type

 Figure 149 Face/Node numbering for Prism Cell type

 Figure 150 Face/Node numbering for Hexahedron Cell Type

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 417

Table of ContentsIndex

Arbitrary Polyhedron Cells
The Arbitrary Polyhedron 3D element (cell) type adds flexibility to FieldView’s handling of unstructured
grid files. These cells can have up to 256 faces, each of which can have up to 256 vertices. The faces
do not have to be flat (planar). Arbitrary polyhedron cells accommodate trimmed versions of the stan-
dard cell types, hanging nodes on grids (for grids that have been refined in certain areas), and polyhe-
drons such as dodecahedrons. They provide a way to emulate cells with quadratic basis functions. In
fact, using cell center values in addition to the nodal values (which are always required) can increase
the accuracy of interpolation within the cell. Note that these cells can be freely intermixed with the
standard cell types.

Cell center nodes and hanging face nodes are optional. Arbitrary Polyhedron Cells are described in
FieldView by providing the following data:

For each cell
• Number of Faces in the cell
• Number of Nodes in the cell (including any cell center or hanging nodes)
• Node ID of cell center data (or a negative integer that is less than 0, if there is no cell center data)

For each Face in the cell
• Wall Flag (just like the standard element types)
• Number of Regular Nodes on the Face
• List of Regular Node IDs on the Face *
• Number of Hanging Nodes on the Face (or 0 if there are none)
• List of Hanging Node IDs (only if preceding value is greater than 0)

* - The ordering of node IDs for each face must be consistent with the other faces of the cell. If one
face is clockwise, then all faces of the cell must be clockwise. Otherwise, FieldView will reject the cell.

 Figure 151 Overview of Arbitrary Polyhedron Cell type

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 418

Table of ContentsIndex

There are some limitations on the types of arbitrary polyhedrons that are accepted by FieldView:

• If the cell has a center node or hanging face nodes, then it is converted into tetrahedrons. This
causes FieldView to use more memory. It also causes additional edges and polygons to appear in
surfaces created from these cells. If you want all Arbitrary Polyhedron cells to be converted into
tetrahedrons, you can force this by setting the environment variable FV_TET_CONV.

• If an Arbitrary Polyhedron cell is converted into tetrahedrons, and you also set the environment
variable FV_ARB_POLY, then FieldView will use a slower but more careful conversion that incor-
porates any hanging face nodes. The FV_ARB_POLY environment variable has no effect on cells
that are not converted into tetrahedrons.

• Cells that are converted to tetrahedrons must be convex or "slightly" non-convex (for a cell to be
"convex", it must satisfy the criterion that a line connecting any two nodes must be contained
entirely within the cell).

• Cells that are converted to tetrahedrons cannot have degenerate nodes on a face (i.e., no two
nodes of a face can occupy the same point in space).

• No hanging nodes are permitted on a face edge. Nodes on a face edge should be defined as face
nodes rather than hanging nodes, i.e., all hanging nodes are to be in the interior of a face.

Here are two examples of Arbitrary Polyhedron cells. The node numbers in the examples correspond
to the node numbers of two Arbitrary Polyhedron cells generated in the code examples located in the
/uns subdirectory of the directory where FieldView is installed.

Example 1 has a center node, so this cell will be converted to tetrahedrons. Example 2 has a hanging
face node (not connected to the other nodes of the face). Therefore, Example 2 will also be converted
to tetrahedrons.

Example 1: Hex Cell with Trimmed Face and Center Value

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 419

Table of ContentsIndex

Example 2: Hex Cell with Hanging Node, No Center Value

The node numbering in the examples above corresponds to the node numbering in code examples
located in the /uns subdirectory of the directory where FieldView is installed.

 Figure 152 Hex Cell with Trimmed Face and Center Value

 Figure 153 Hex Cell with Hanging Node, No Center Value

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 420

Table of ContentsIndex

Arbitrary Polygon Boundary Faces
The Arbitrary Polygon Boundary Face type adds flexibility to FieldView’s handling of boundary sur-
faces in unstructured grid files. Arbitrary Polygon Boundary Faces are defined by providing a count of
the number of nodes that bound the face and the node IDs. The number of nodes that bound an Arbi-
trary Polygon Boundary Face may vary from 3 to 256. Hanging nodes are not permitted on Arbitrary
Polygon Boundary Faces.

Arbitrary Polygon Boundary Faces are handled natively by FieldView, and are not converted into trian-
gles. The faces do not have to be convex, and do not have to be flat (planar).

Arbitrary Polygon Boundary Faces support Surface Based results. Surface Based results for Arbitrary
Polygon Boundary faces (as well as for standard triangular and quadrilateral faces) are function values
that exist only on the boundary faces and not within the flow field of the underlying triangles. No subdi-
vision or distribution is done.

For each grid in a Binary, Unformatted, or ASCII FV-UNS file Arbitrary Polygon Boundary Faces must
always be written after all standard triangular and quadrilateral faces have been written. Obviously, tri-
angular and quadrilateral faces that are described as Arbitrary Polygon Boundary Faces (rather than
as standard faces) are written with other Arbitrary Polygon Boundary Faces and treated as Arbitrary
Polygon Boundary Faces.

Note: An Arbitrary Polygon Boundary Face and a face of an Arbitrary Polyhedron volume ele-
ment are different entities in FV-UNS file format. Hanging nodes are only permitted on the
interior of faces of Arbitrary Polyhedron volume elements.

Arbitrary Polygons are limited to 256 nodes per face and up to 256 faces per cell.

FieldView Compliance for Unstructured Data
The idea of FieldView Compliance is that well written FV-UNS files will support both regions (grid or
block grouping definitions) and face-based data. Regions allow for independent manipulation of differ-
ent volume elements of your model, and can be used very effectively in turbomachinery or rotating
blade applications. Regions can be made up of one or more grids. The inclusion of one or more grids
into a region is established through a corresponding region file, *.fvreg (see Chapter 3). In order
to specify regions, multiple grids must be set up within the FV-UNS file first.

Face based data lets you assign a variable per face, instead of per node, on boundary types within the
FV-UNS model definition. This offers the benefit of being able to store "surface-only" data for a small
part of the entire model. Surface only data, which is often associated with surface fluxes (momentum,
heat, mass) can be stored in the format which is more native to the output from finite volume solvers.
Subsequent integration of these results will therefore match those determined from a direct analysis of
the solver output. Note that face based data can only be stored for faces belonging to a boundary
type.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 421

Table of ContentsIndex

To establish the correspondence between the boundary types and face based data, specific flags are
used. Each 2D element or face in a boundary type has a surface results flag and a clockness flag.
For the surface results flag, a value of 1 means surface results will be present and a value of 0
means no surface results will be present. Clockness is needed to calculate surface normals. For the
clockness flag, a value of 1 means that the face follows a "right hand rule". In other words, if the ver-
tices are written counter-clockwise as in Figure 154,

the normal to the face is pointing towards you (not away from you). A value of 0 means that the faces
do not have any consistent clockness. The clockness of surface normals is only used for calculating
surface integral components that involve surface normals. If the clockness flag is 0, these special
integral results will not be available.

Important note for users working with older FV-UNS file formats: FV-UNS files in ASCII format
(all versions), or in Binary/Unformatted (version 2.2 and earlier) would allow the vertices of
quadrilateral faces to be given in arbitrary order. The faces would then be matched up to the
element or elements they were attached to and the vertices were taken from the element - not
the face - for boundary type definitions in FieldView. The Binary/Unformatted FV-UNS file for-

mats (version 2.3 and above) have separate face and element sections, so files that previously read
without problems may now result in degenerate boundary faces. Typically they will resemble "bow-
ties" when displayed with Display Type set to Mesh. Switching the order of the last two vertices for any
degenerate quad faces is all that is required to fix them.

In order to make the task of writing FV-UNS files easier, several example code fragments are supplied
as part of the regular FieldView installation:

write_ascii_uns.f
write_split_ascii_uns.f
write_binary_uns.c
write_split_binary_uns.c
write_unformatted_uns.F
write_split_unformatted_uns.F
fv_reader_tags.h

1 2

3 4

 Figure 154 Surface Normal Clockness

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 422

Table of ContentsIndex

ftn_fv_reader_tags.h

These files are located in the /uns subdirectory of the directory where FieldView is installed. The
following sections of this appendix describe the specific detail of each file type, for the split (grid or
results only) and combined FV-UNS file formats. References are made to each of the files mentioned
above.

Tip: All integer sections (face and element specifications sections) of the FV-UNS file will be scanned
for valid data. For exceptionally large files, this may take some time. To speed up input, you may set
the environment variable FV_NO_DATA_CHECK to a value of 1. However, when this variable is set,
no error checking will be done for integer sections of the file. Thus, you should only set this variable if
you are very confident of your data integrity.

Binary Format

General Remarks on Binary Format
Binary files can only be created with C and certain FORTRAN compilers (see Creating FV-UNS files
with FORTRAN 77 and C for different OS on page 504 for more information). All strings must be
written as a record of 80 characters. All characters after the first null character (if any) are discarded.
There are no explicit end of file characters. Comment lines are not allowed in binary format.

Split Binary Format
General Remarks on Split Binary Format
Sample C code, called write_split_binary_uns.c, for writing the FieldView-Unstructured
Binary data format has been included in the subdirectory /uns of the FieldView installation. This
sample file provides a framework for use with your own writer and includes tips for easier application.
All parameter definitions (FV_MAGIC, FV_ELEMENTS, etc.) are found in the header file fv_read-
er_tags.h in the /uns subdirectory. The sample file also contains two useful functions:
fwrite_str80 and fv_encode_elem_header. These are used in the code samples below.

Grid File in Split Binary Format
The first section contains an open statement for the grid file:

/*Open the grids file for binary write access. */
if ((outfp = fopen(grids_file_name, "wb")) ==
NULL)
{ perror ("Cannot open output file");
exit(1);}

Next section contains a bit pattern to identify the file to FieldView. The section must be as follows:

/* Output the magic number. */
ibuf[0] = FV_MAGIC;
fwrite(ibuf, sizeof(int), 1, outfp);

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 423

Table of ContentsIndex

66051

The next section contains a file type string as shown (strings must be written as a record of 80 charac-
ters):

/* Output file header and version number. */
fwrite_str80("FIELDVIEW", outfp);

FIELDVIEW

Next, the version numbers for the format must be written as shown:

/* This version of the FieldView unstructured file is "3.0".
This is written as two integers.*/
ibuf[0] = 3;
ibuf[1] = 0;
fwrite(ibuf, sizeof(int), 2, outfp);

3 0

Next, an integer number, the file type code is written:

/* File type code - new in version 2.7 */
ibuf[0] = FV_GRIDS_FILE;
fwrite(ibuf, sizeof(int), 1, outfp);

1

Next, an integer number, a zero, is written:

/* Reserved field, always write a zero - new in version 2.6. */
ibuf[0] = 0;
fwrite(ibuf, sizeof(int), 1, outfp);

0

Next, the number of grids must be written. Separating your data into multiple grids is needed in order
to use FieldView region grouping capabilities. One or more grids may be associated with a region via
FieldView Region File (see Chapter 3 of the Reference Manual for more information on region files).
If regions are not to be used, writing multiple grids is still beneficial, as the Grid File will then be suit-
able for the Grid-Parallel FieldView Server Input options.

/* Output the number of grids. */
ibuf[0] = num_grids;
fwrite(ibuf, sizeof(int), 1, outfp);

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 424

Table of ContentsIndex

1

Each boundary face (2D element) must have an integer number, the boundary face type, assigned to
it. The integer numbers may range from one to the number of different boundary types. This is used
to associate the face with a boundary. The next section contains the number of different boundary
types (which in the sample source file is equal to 5):

ibuf[0] = num_face_types;
fwrite(ibuf, sizeof(int), 1, outfp);

5

The next section contains Boundary Types (names of boundaries). The number of Boundary Types
should be equal to the number of different boundary types written in the previous section. Each
Boundary Type name is preceded by two integer numbers: Surface Results Flag and Clockness Flag.
The clockness of surface normals is only used for calculating certain boundary surface integrals that
involve surface normals. If the surface normals flag is 0, these special integrals will not be available.
Boundary Type names may contain blanks. Boundary Type names should always start with a letter.
Each boundary type name should be different from all other boundary type names. The comparison of
names is case-insensitive.

Surface Results Flag = 1 implies face based results present
= 0 implies no face based results present

Clockness Flag = 1 implies consistent clockness
(for component integral results output)

= 0 implies no consistent clockness

Character strings must be written as records of 80 characters; this is accomplished by using the
fwrite_str80 function from the sample source.

for (i = 0; i < num_face_types; i++) {
ibuf[0] = results_flag[i];
ibuf[1] = normals_flag[i];
fwrite(ibuf, sizeof(int), 2, outfp);
fwrite_str80(face_type_names[i], outfp);
}

1 1 bottom
1 1 top
0 0 wall
1 1 trimmed cell
1 1 hanging node cell

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 425

Table of ContentsIndex

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section contains the node information for the grid being written. First a header word with a
numeric field signifies the section number. Next, the number of nodes in this grid is written.

/* Output the node definition section for this grid. */
ibuf[0] = FV_NODES;
ibuf[1] = nnodes;
fwrite(ibuf, sizeof(int), 2, outfp);

1001 31

This is followed by all of X, all of Y, and all of Z coordinates for all nodes in this grid. Note that all X
coordinates are output first, then all Y and finally all Z:

/* Output the X, then Y, then Z node coordinates.*/
fwrite(x, sizeof(float), nnodes, outfp);
fwrite(y, sizeof(float), nnodes, outfp);
fwrite(z, sizeof(float), nnodes, outfp);

-1. -1. 1. 1. -1. -1. 1. 1. -1. -1. 1. 1. 2. 2. 3. 3. 2.5 3. 2. 3. 3.
2. 2.5 3. 3. 3. 2.5 2. 2. 2.0 2.5

-1. -1. -1. -1. 1. 1. 1. 1. 3. 3. 3. 3. 0. 0. 0. 0. 0. .5 1. 1. 1. 1.
.5 2. 2. 1.5 2. 2. 2. 1.45 1.5

-1. 1. -1. 1. -1. 1. -1. 1. -1. 1. -1. 1. 1. 0. 0. .5 1. 1. 1. 1. 0. 0.
.5 0. 1. 1. 1. 1. 0. 1. 1

The Standard Boundary Face section(s) for standard 2D elements is (are) next, starting with a header
word FV_FACES. Next, you must specify the boundary type (based upon the table above), the num-
ber of faces of this type, and then the vertices of each face. In the example presented herein, one face
belongs to the boundary type bottom. Its Standard Boundary Face section is as follows:

ibuf[0] = FV_FACES;
ibuf[1] = 1; /* first boundary type */
ibuf[2] = 1; /* number of faces of this type */
fwrite(ibuf, sizeof(int), 3, outfp);
fwrite(bot_faces, sizeof(int), 4, outfp);

1002 1 1
1 2 3 4

where

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 426

Table of ContentsIndex

1002 header signifying the start of the face section
1 specifies boundary type bottom, the first type in the table above
1 the number of separate faces that have this type
1 2 3 4 nodes 1, 2, 3 and 4 make up a quadrilateral face

Note: If the face is triangular (only has 3 nodes), you must specify the fourth vertex as zero.

Caution: A single boundary type can be broken into several sections if you prefer. Also, boundary
face sections do not have to be in order. You may have a section of 10 faces of type 3, followed by a
section of 20 faces of type 2, followed by a section of 15 more faces of type 3. However, note that
breaking a boundary type into very many short sections is less efficient. The boundaries will require
more memory and be somewhat slower to calculate in FieldView. Also note that you cannot mix stan-
dard (triangular and quadrilateral) faces and arbitrary polygon boundary faces in the same section.

Next, a section for the boundary surface of type top is written.

ibuf[0] = FV_FACES;
ibuf[1] = 2; /* second boundary type */
ibuf[2] = 1; /* number of faces of this type */
fwrite(ibuf, sizeof(int), 3, outfp);
fwrite(top_faces, sizeof(int), 4, outfp);

1002 2 1
9 10 12 11

Next, a section for the boundary surface of type wall is written.

ibuf[0] = FV_FACES;
ibuf[1] = 3; /* third boundary type */
ibuf[2] = 8; /* number of faces of this type */
fwrite(ibuf, sizeof(int), 3, outfp);
fwrite(wall_faces, sizeof(int), 8*4, outfp);

1002 3 8
1 2 6 5
5 6 10 9
3 4 8 7
7 8 12 11
1 3 7 5
5 7 11 9
2 4 8 6
6 8 12 10

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 427

Table of ContentsIndex

The Arbitrary Polygon Boundary Face section(s) is (are) next. The semantics are the same as for
standard boundary faces. If you are not specifying arbitrary polygon boundary faces, you can skip
specifying this section completely. There are one or more separate sections for each boundary face
type, as in the case for standard boundary faces. The node ordering for specifying faces should follow
the right-handed rule (see FieldView Compliance for Unstructured Data on page 420 for more
information). In other words, nodes should be given by walking around the perimeter of the face in a
counter-clockwise manner. Hanging nodes are not permitted on boundary faces. In the example pre-
sented herein (see code in /uns subdirectory of the directory where FieldView is installed), there are
two Arbitrary Polygon Boundary Face sections, one for the trimmed node cell, and one for the hanging
node cell (the cells are shown in the section on Arbitrary Polyhedron Cells on page 417).

All Standard Boundary Face sections must be written before any Arbitrary Boundary Face sections.

Each Arbitrary Polygon Boundary Face section starts with a header word FV_ARB_POLY_FACES,
boundary face type and the number of faces for the section. The boundary face type for trimmed cell
is 4, and the number of faces of this type is 7.

1007 ibuf[0] = FV_ARB_POLY_FACES;
4 ibuf[1] = 4; /* boundary face type */
7 ibuf[2] = 7; /*num faces for the trimmed cell*/

fwrite(ibuf, sizeof(int), 3, outfp);

Next, there is a loop over the faces of type trimmed cell to write cell nodes:

for(i = 0; i < num_faces_trim_cell; ++i) /* loop over the faces */
fwrite(trim_cell_face[i], sizeof(int), trim_cell_face[i][0] + 1,

outfp);

5 13 14 15 16 17
3 16 18 17
5 15 21 20 18 16
5 13 17 18 20 19
4 13 19 22 14
4 14 22 21 15
4 19 20 21 22

The boundary face type for hanging node cell is 5, and the number of faces of this type is 6.

ibuf[0] = FV_ARB_POLY_FACES;
ibuf[1] = 5; /* boundary face type */
ibuf[2] = 6; /* num faces for the hanging node cell */
fwrite(ibuf, sizeof(int), 3, outfp);

1007 5 6

Next, there is a cycle over the faces of type hanging node cell to write cell nodes:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 428

Table of ContentsIndex

for(i = 0; i < num_faces_hang_cell; ++i) /* loop over the faces */
fwrite(hang_cell_face[i], sizeof(int), hang_cell_face[i][0] + 1,

outfp);

5 20 21 24 25 26
5 24 29 28 27 25
7 20 26 25 27 28 30 19
4 20 19 22 21
4 21 22 29 24
5 22 19 30 28 29

The following sections are 3D element sections. There may be as many element sections as needed.
Each section may consist of as many elements as needed. There are two kinds of 3D element sec-
tions: Standard 3D Element section and Arbitrary Polyhedron section. Each Standard 3D Element
section may contain a single element type or a mixture of standard element types (tetrahedron, hexa-
hedron, prism, pyramid). Standard Element sections may be written before, after, or in-between Arbi-
trary Polyhedron sections. For maximum efficiency, each Standard 3D Element section should contain
a significant percentage of the elements of the grid.

The next section is a Standard 3D Element section. It starts with the FV_ELEMENTS keyword and
includes the number of standard elements of each type (tetrahedron, hexahedron, prism, pyramid).

ibuf[0] = FV_ELEMENTS;
ibuf[1] = 0; /* tet count */
ibuf[2] = 2; /* hex count */
ibuf[3] = 0; /* prism count */
ibuf[4] = 0; /* pyramid count */
fwrite(ibuf, sizeof(int), 5, outfp);

1003 0 2 0 0

where

1003 header signifying the start of the elements section
0 number of tetrahedrons
2 number of hexahedrons
0 number of prisms
0 number of pyramids

The standard elements within the Standard 3D Element section can be written in any order, without
regard to element type. For each element, a header for that element is written. The header is followed
by the node definition for the element. The proper header value is generated by a call to fv_en-
code_elem_header (found in the sample source write_split_binary_uns.c in the /uns
directory). This C routine packs the information about the element type and wall flags into a four byte
word that is called the element header. The 3D element face wall flags indicate whether a particular

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 429

Table of ContentsIndex

element face should be treated as a wall in streamline computations. Note that the wall flag data con-
tained in the header is only used during streamline calculation; the data is not used as boundary types.

The 3D element types are: 1-tetrahedron, 2-hexahedron, 3-prism, 4-pyramid. See Stan-
dard 3D element types on page 415 for node numbering information.

/* Write header for first element. */
elem_header = fv_encode_elem_header(FV_HEX_ELEM_ID, hex1_walls);
if (elem_header == 0)
{
fprintf (stderr, "fv_encode_elem_header failed for first hex.\n");
exit(1);
 }
fwrite (&elem_header, sizeof(elem_header), 1, outfp);

First element header – four byte word

/* Write node definition for first element. */
fwrite(hex1, sizeof(int), 8, outfp);

1 2 3 4 5 6 7 8

/* Write header for second element. */
elem_header = fv_encode_elem_header(FV_HEX_ELEM_ID, hex2_walls);
if (elem_header == 0)
{
fprintf (stderr, "fv_encode_elem_header failed for second hex.\n");
exit(1);

}
fwrite (&elem_header, sizeof(elem_header), 1, outfp);

Second element header – four byte word

/* Write node definition for second element. */
fwrite(hex2, sizeof(int), 8, outfp);

5 6 7 8 9 10 11 12

Important Note: The ordering of the nodes within an element is important. See Figure 151 in
this appendix for details.

The next section is for specifying Arbitrary Polyhedron Elements. This section is not required to be
present. If you are not specifying arbitrary polyhedron elements, you can skip this section altogether.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 430

Table of ContentsIndex

The section consists of one or more arbitrary polyhedron elements. The section starts with the key-
word FV_ARB_POLY_ELEMENTS.

The wall flag for arbitrary polyhedron elements has the same meaning as for standard elements (in
standard element headers), i.e. A_WALL or NOT_A_WALL (see fv_reader_tags.h file in /uns
subdirectory of the directory where FieldView is installed). The wall flag information is used in stream-
line computations. The node ordering for specifying faces should be consistent; if one face is clock-
wise, then all faces of the cell must be clockwise. Hanging nodes are associated with a face interior
and should not be on an edge (hanging nodes on an edge should be specified as regular arbitrary
polygon boundary face nodes).

In the example presented herein (see code in /uns subdirectory of the directory where FieldView is
installed) there are two arbitrary polyhedron elements: a trimmed cell element and a hanging node
element (the cells are shown in Arbitrary Polyhedron Cells on page 417). The section starts with
the FV_ARB_POLY_ELEMENTS keyword and the number of elements.

ibuf[0] = FV_ARB_POLY_ELEMENTS;
ibuf[1] = 2; /* have 2 elements here */
fwrite(ibuf, sizeof(int), 2, outfp);

1008 2

After that, the number of faces, the number of nodes (including the center node if there is one), and the
center node number are written for the trimmed cell element. The center node number should be
specified as a negative number if there is not a center node.

/* trimmed face element */
ibuf[0] = 7; /* num faces for the trimmed cell */
ibuf[1] = 11; /* number of nodes including a center node */
ibuf[2] = 23; /* the center node */
fwrite(ibuf, sizeof(int), 3, outfp);

7 11 23

Next, there is a cycle over the faces of the trimmed cell element to write for each face: wall value,
number of vertices for the face, node numbers for vertices of the face. In this example, all faces for the
element are assumed to be walls. All faces for the element are assumed not to have hanging nodes
on them.

ibuf[0] = A_WALL; /* wall value */
ibuf[1] = 0; /* number of hanging nodes */

for(i = 0; i < num_faces_trim_cell; ++i) /* write out face info */
{
fwrite(ibuf, sizeof(int), 1, outfp); /* write wall value */
fwrite(trim_cell_face[i], sizeof(int), trim_cell_face[i][0] + 1,

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 431

Table of ContentsIndex

outfp); /* write num verts and verts */
fwrite(&ibuf[1], sizeof(int), 1, outfp); /* write num hang nodes */

}

7 5 13 14 15 16 17 0
7 3 16 18 17 0
7 5 15 21 20 18 16 0
7 5 13 17 18 20 19 0
7 4 13 19 22 14 0
7 4 14 22 21 15 0
7 4 19 20 21 22 0

After that, number of faces, number of provided nodes (no center node exists for the cell), and "–1"
for the center node number are written for the hanging node element. A negative integer number for
the center node tells FieldView that there is no center node specified for this cell.

/* hanging node element */
ibuf[0] = 6; /* num faces for the hanging node cell */
ibuf[1] = 12; /* number of nodes including a center node */
 /* (if center node exists) */
ibuf[2] = -1; /* the center node, this indicates that there
 ** is no centernode */
fwrite(ibuf, sizeof(int), 3, outfp);

6 12 -1

Next, the following data is written for each face of the trimmed cell element: wall value, number of ver-
tices for the face, node numbers for vertices of the face. All faces for the element are assumed to be
walls. All faces for the element except face 3 are assumed not to have hanging nodes at them. Face
3 has one hanging node. Node number for the hanging node is 31.

ibuf[0] = A_WALL; /* wall value */
ibuf[1] = 0; /* number of hanging nodes */
ibuf[2] = 1; /* number of hanging nodes for face 3 */
ibuf[3] = 31; /* the node number for the hanging node on face 3*/
for(i = 0; i < 2; ++i) /* write out face info for first 2 faces */
{
fwrite(ibuf, sizeof(int), 1, outfp); /* write wall value */
fwrite(hang_cell_face[i], sizeof(int), hang_cell_face[i][0] + 1,

outfp); /* write num verts and verts */
fwrite(&ibuf[1], sizeof(int), 1, outfp); /* write num hang nodes */

}

7 5 20 21 24 25 26 0
7 5 24 29 28 27 25 0

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 432

Table of ContentsIndex

/* this face has a hanging node */
fwrite(ibuf, sizeof(int), 1, outfp);
fwrite(hang_cell_face[2], sizeof(int), hang_cell_face[2][0] + 1,
outfp);
fwrite(&ibuf[2], sizeof(int), 2, outfp);

7 7 20 26 25 27 28 30 19 1 31

/* write out face info for last 3 faces */
for(i = 3; i < num_faces_hang_cell; ++i)

{
fwrite(ibuf, sizeof(int), 1, outfp); /* write wall value */
fwrite(hang_cell_face[i], sizeof(int), hang_cell_face[i][0] + 1,

outfp); /* write num verts and verts */
fwrite(&ibuf[1], sizeof(int), 1, outfp); /* write num hang nodes */

}

7 4 20 19 22 21 0
7 4 21 22 29 24 0
7 5 22 19 30 28 29 0

Note: The arbitrary polyhedron element section(s) can appear before, after, or in-between
standard 3D element (tetrahedron, pyramid, prism, hexahedron) sections. There can be any
number of both arbitrary polyhedron element sections and standard 3D element sections for
any grid. The only requirement is to start each section of standard 3D elements with
FV_ELEMENTS keyword, and to start each section of arbitrary polyhedron elements with

FV_ARB_POLY_ELEMENTS keyword.

Closing of grid file:

if (fclose(outfp) != 0)
 {
perror ("Cannot close output file");
exit(1);
 }

Results File in Split Binary Format
The first section contains an open statement for the results file:

/*Open the results file for binary write access. */
 if ((outfp = fopen(results_file_name, "wb"))
 == NULL)
 { perror ("Cannot open output file");
 exit(1);}

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 433

Table of ContentsIndex

The next section contains a bit pattern to identify the file to FieldView. The section must be as follows:

/* Output the magic number. */
ibuf[0] = FV_MAGIC;
fwrite(ibuf, sizeof(int), 1, outfp);

66051

The next section contains a file type string as shown (strings must be written as a record of 80 charac-
ters):

/* Output file header and version number. */
fwrite_str80("FIELDVIEW", outfp);

FIELDVIEW

Next, the version numbers for the format must be written as shown:

/* This version of the FieldView unstructured file is "3.0".
This is written as two integers.*/
ibuf[0] = 3;
ibuf[1] = 0;
fwrite(ibuf, sizeof(int), 2, outfp);

3 0

Next, an integer number, the file type code is written:

/* File type code - new in version 2.7 */
ibuf[0] = FV_RESULTS_FILE;
fwrite(ibuf, sizeof(int), 1, outfp);

2

Next, an integer number, a zero, is written:

/* Reserved field - new in version 2.6 */
/* Always write a zero. */
ibuf[0] = 0;
fwrite(ibuf, sizeof(int), 1, outfp);

0

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 434

Table of ContentsIndex

Next is the solution time, TIME, and 3 constants, FSMACH, ALPHA and RE that may be used by the
"CFD Calculator". If your results are not transient, you should put a floating point zero for the time
value. Similarly, if you do not wish to use these constants, use zero for these values as well.

The solution time and the 3 constants are all floating point numbers.

/* Output constants for time, fsmach, alpha, re */
fwrite(consts, sizeof(float), 4, outfp);

1.0 0.0 0.0 0.0

Next, the number of grids must be written:

/* Output the number of grids. */
ibuf[0] = num_grids;
fwrite(ibuf, sizeof(int), 1, outfp);

1

The next section contains the number of volume (nodal) variables in the file, followed by the names of
the variables. When listing the names of the variables, a vector is indicated by following the first com-
ponent of the vector with a semicolon and the name of the vector. This will indicate that this variable
and the next two listed are the three components of the vector (note that a vector is counted as three
variables). The variable names may contain blanks.

Note: The number of variables can be zero, meaning the file contains no information on vol-
ume variables. If this is the case, the number of variables, "0", still has to be present in the
file.

/* Output the table of variable names. */
/* The number of variables can be zero. */
ibuf[0] = num_vars;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_vars; i++)
 fwrite_str80(var_names[i], outfp);

4
pressure
uvel; velocity
vvel
wvel

The next section contains the number and names of boundary variables in the file. Boundary variables
are associated with boundary faces, rather than with grid nodes. FieldView will automatically append
[BNDRY] to each name so boundary variables can be easily distinguished from volume (nodal) vari-

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 435

Table of ContentsIndex

ables. The number of boundary variables can be different from the number of volume variables. The
number of boundary variables can also be zero. If this is the case, the number of boundary variables,
"0", still has to be present in the file.

ibuf[0] = num_bvars;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_bvars; i++)
 fwrite_str80(bvar_names[i], outfp);

4
temperature
uvel; velocity
vvel
wvel

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section contains some node information for the grid. First the header word FV_NODES is
written. Next, the number of nodes in this grid is written. It should be the same as the number of
nodes in the corresponding grid file.

/* Output node count only for this grid. */
ibuf[0] = FV_NODES;
ibuf[1] = nnodes;
fwrite(ibuf, sizeof(int), 2, outfp);

1001
31

Next, the variable section is listed. This begins with a header, followed by the results of each variable.
Note that the results are in single precision. This section header is required even if the number of vari-
ables is zero.

ibuf[0] = FV_VARIABLES;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_vars; i++)
 fwrite(vars[i], sizeof(float), nnodes, outfp);

1004
1.0 0.1 1.2 0.1
1.1 0.2 1.1 0.2
…
1.18 1.18 1.18 1.18

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 436

Table of ContentsIndex

(124 real numbers - 4 variables for 31 nodes)

Note: One needs to write out all of the results, in node order, for variable 1 (in this case
pressure), then all of the results, in node order, for variable 2 (in this case u-velocity),
etc. All of the data for the first variable is output before any of the data for the second variable.
The total number of real numbers should match the number of nodes times the number of
variables.

Next, the section that contains boundary variable data for standard boundary faces (quadrilaterals and
triangles) is written. Remember that the Boundary Table above has a surface results flag indicating
which boundary types have face data (surface results). The data should be written in the same order
as the faces in the Boundary Faces sections, skipping over faces whose boundary type has a surface
results flag of zero (false). For each variable, you should write one number per boundary face. You
must write the section header even if the number of boundary variables is zero.

ibuf[0] = FV_BNDRY_VARS;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_bvars; i++) {
int num_faces;
num_faces = 1; /* number of bottom faces */
fwrite(&bot_bvars[i],sizeof(float),num_faces,outfp);
num_faces = 1; /* number of top faces */
fwrite(&top_bvars[i],sizeof(float),num_faces,outfp);
 }
1006
1002.11.0
5.5 2.0
5.6 4.0
3.0 2.5

For each boundary variable, the boundary variable values for all standard faces are written. In the
example presented herein, the first boundary variable value is written for the boundary of the type
bottom, since the boundary was written first in the Boundary Types section. The first boundary vari-
able value for the boundary of the type top follows variable value for the boundary of the type bot-
tom. The boundary variable values for the boundary of the type wall are skipped, since the surface
results flag for the wall boundary type was 0 (false) in the Boundary Types section. All of the data
for the first boundary variable (at standard faces) is output before any of the data for the second vari-
able. After that, the data for the third variable is written. Finally, the data for the fourth variable is writ-
ten. The total number of real numbers in the section should match the number of boundary variables
times the number of standard boundary faces (quadrilaterals and triangles) that belong to a boundary
of a particular type times the number of boundary types that have surface results flag 1 (true).

Next, the section that contains boundary variable data for arbitrary polygon boundary faces is written.
This section should always appear after the section that contains boundary variable data for the stan-
dard boundary faces (if faces of both standard and arbitrary polygon boundary faces are present in the
dataset). Remember that the Boundary Table above has a surface results flag indicating which bound-

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 437

Table of ContentsIndex

ary types have face data (surface results). The data should be written in the same order as the faces
in the Arbitrary Polygon Boundary Face sections, skipping over faces whose boundary type has a sur-
face results flag of zero (false). For each variable, you should write one number per arbitrary polygon
boundary face.

ibuf[0] = FV_ARB_POLY_BNDRY_VARS;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_bvars; ++i)
{

int num_faces;
num_faces = 7; /* num faces for the trimmed cell */
fwrite(trim_cell_bvars[i], sizeof(float), num_faces, outfp);
num_faces = 6; /* num faces for the hanging node cell */
fwrite(hang_cell_bvars[i], sizeof(float), num_faces, outfp);
}

1009
1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.1 1.11 1.12 1.13 1.14 1.15
1.7 1.8 1.9 1.1 1.11 1.12 1.13
1.16 1.17 1.18 1.19 1.2 1.21
1.14 1.15 1.16 1.17 1.18 1.19 1.2
1.22 1.23 1.24 1.25 1.26 1.27
1.21 1.22 1.23 1.24 1.25 1.26 1.27
1.28 1.29 1.30 1.31 1.32 1.33

Closing of results file:

if (fclose(outfp) != 0)
 {
perror ("Cannot close output file");
exit(1);
 }

Combined (Grid & Results) Binary Format
Sample C code, called write_binary_uns.c, for writing the FieldView-Unstructured Binary data
format has been included in the subdirectory /uns of the FieldView installation. This sample file pro-
vides a framework for use with your own writer and includes tips for easier application. All parameter
definitions (FV_MAGIC, FV_ELEMENTS, etc.) can be found in the header file fv_reader_tags.h in
the uns directory. The sample file also contains two useful functions: fwrite_str80 and fv_en-
code_elem_header. These will be used in the code samples below.

The first section contains an open statement for the grid file:

/* Open the file for binary write access. */

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 438

Table of ContentsIndex

if ((outfp = fopen(file_name, "wb")) == NULL)
{
 perror ("Cannot open output file");
 exit(1);
 }

Next section contains a bit pattern to identify the file to FieldView. The section must be as follows:

/* Output the magic number. */
ibuf[0] = FV_MAGIC;
fwrite(ibuf, sizeof(int), 1, outfp);

66051

The next section contains a file type string as shown (strings must be written as a record of 80 charac-
ters):

/* Output file header and version number. */
fwrite_str80("FIELDVIEW", outfp);

FIELDVIEW

Next, the version numbers for the format must be written as shown:

/* This version of the FieldView unstructured file is "3.0".
This is written as two integers.*/
ibuf[0] = 3;
ibuf[1] = 0;
fwrite(ibuf, sizeof(int), 2, outfp);

3 0

Next, an integer number, the file type code, is written:

/* File type code - new in version 2.7 */
ibuf[0] = FV_COMBINED_FILE;
fwrite(ibuf, sizeof(int), 1, outfp);

3

Next, an integer number, a zero, is written:

/* Reserved field, always write a zero - new in version 2.6. */
ibuf[0] = 0;
fwrite(ibuf, sizeof(int), 1, outfp);

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 439

Table of ContentsIndex

0

Next is the solution time, TIME, and 3 constants, FSMACH, ALPHA and RE that may be used by the
"CFD Calculator". If your results are not transient, you should put a floating point zero for the time
value. Similarly, if you do not wish to use these constants, use zero for these values as well.

The solution time and the 3 constants are all floating point numbers.

/* Output constants for time, fsmach, alpha, re */
fwrite(consts, sizeof(float), 4, outfp);

1.0 0.0 0.0 0.0

Next, the number of grids must be written. Separating your data into multiple grids is needed in order
to use FieldView region grouping capabilities. One or more grids may be associated with a region via
FieldView Region File (see Chapter 3 of the Reference Manual for more information on region files).
If regions are not to be used, writing multiple grids is still beneficial, as the Grid File will then be suit-
able for the Grid-Parallel FieldView Server Input options.

/* Output the number of grids. */
ibuf[0] = num_grids;
fwrite(ibuf, sizeof(int), 1, outfp);

1

Each boundary face (2D element) must have an integer number, the boundary face type, assigned to
it. The integer number may range from one to the number of different boundary types. This is used to
associate the face with a boundary. The next section contains the number of different Boundary Types
(which in the sample source file is equal to 5):

ibuf[0] = num_face_types;
fwrite(ibuf, sizeof(int), 1, outfp);

5

The next section contains Boundary Types (names of boundaries). The number of Boundary Types
should be equal to the number of different boundary types written in the previous section. Each
Boundary Type name is preceded by two integer numbers: Surface Results Flag and Clockness Flag.
The clockness of surface normals is only used for calculating certain boundary surface integrals that
involve surface normals. If the surface normals flag is 0, these special integrals will not be available.
Boundary Type names may contain blanks. Boundary Type names should always start with a letter.
Each boundary type name should be different from all other boundary type names. The comparison of
names is case-insensitive.

Surface Results Flag = 1 implies face based results present
= 0 implies no face based results present

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 440

Table of ContentsIndex

Clockness Flag = 1 implies consistent clockness
(for component integral results output)

= 0 implies no consistent clockness

Character strings must be written as records of 80 characters; this is accomplished by using the
fwrite_str80 function from the sample source.

for (i = 0; i < num_face_types; i++) {
ibuf[0] = results_flag[i];
ibuf[1] = normals_flag[i];
fwrite(ibuf, sizeof(int), 2, outfp);
fwrite_str80(face_type_names[i], outfp);
}

1 1 bottom
1 1 top
0 0 wall
1 1 trimmed cell
1 1 hanging node cell

The next section contains the number of volume (nodal) variables in the file, followed by the names of
the variables. When listing the names of the variables, a vector is indicated by following the first com-
ponent of the vector with a semicolon and the name of the vector. This will indicate that this variable
and the next two listed are the three components of the vector (note that a vector is counted as three
variables). The variable names may contain blanks.

Note: The number of variables can be zero, meaning the file contains no information on vol-
ume variables. If this is the case, the number of variables, "0", still has to be present in the
file.

/* Output the table of variable names. */
/* The number of variables can be zero. */
ibuf[0] = num_vars;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_vars; i++)
 fwrite_str80(var_names[i], outfp);

4
pressure
uvel; velocity
vvel
wvel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 441

Table of ContentsIndex

The next section contains the number and names of boundary variables in the file. Boundary variables
are associated with boundary faces, rather than with grid nodes. FieldView will automatically append
[BNDRY] to each name so boundary variables can be easily distinguished from volume (nodal) vari-
ables. The number of boundary variables can be different from the number of volume variables. The
number of boundary variables can also be zero. If this is the case, the number of boundary variables,
"0", still has to be present in the file.

ibuf[0] = num_bvars;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_bvars; i++)
 fwrite_str80(bvar_names[i], outfp);

4
temperature
uvel; velocity
vvel
wvel

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section contains the node information for the grid being written. First a header word with a
numeric field signifies the section number. Next, the number of nodes in this grid is written.

/* Output the node definition section for this grid. */
ibuf[0] = FV_NODES;
ibuf[1] = nnodes;
fwrite(ibuf, sizeof(int), 2, outfp);

1001 31

This is followed by all of X, all of Y, and all of Z coordinates for all nodes in this grid. Note that all X
coordinates are output first, then all Y and finally all Z:

/* Output the X, then Y, then Z node coordinates.*/
fwrite(x, sizeof(float), nnodes, outfp);
fwrite(y, sizeof(float), nnodes, outfp);
fwrite(z, sizeof(float), nnodes, outfp);

-1. -1. 1. 1. -1. -1. 1. 1. -1. -1. 1. 1. 2. 2. 3. 3. 2.5 3. 2. 3. 3.
2. 2.5 3. 3. 3. 2.5 2. 2. 2.0 2.5

-1. -1. -1. -1. 1. 1. 1. 1. 3. 3. 3. 3. 0. 0. 0. 0. 0. .5 1. 1. 1. 1.
.5 2. 2. 1.5 2. 2. 2. 1.45 1.5

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 442

Table of ContentsIndex

-1. 1. -1. 1. -1. 1. -1. 1. -1. 1. -1. 1. 1. 0. 0. .5 1. 1. 1. 1. 0. 0.
.5 0. 1. 1. 1. 1. 0. 1. 1.

The Standard Boundary Face section(s) for standard 2D elements is (are) next, starting with a header
word FV_FACES. Next, you must specify the boundary type (based upon the table above), the num-
ber of faces of this type, and then the vertices of each face. In the example presented herein, one face
belongs to the boundary type bottom. Its Standard Boundary Face section is as follows:

ibuf[0] = FV_FACES;
ibuf[1] = 1; /* first boundary type */
ibuf[2] = 1; /* number of faces of this type */
fwrite(ibuf, sizeof(int), 3, outfp);
fwrite(bot_faces, sizeof(int), 4, outfp);

1002 1 1
1 2 3 4

where

1002 header signifying the start of the face section
1 specifies boundary type bottom, the first type in the table above
1 the number of separate faces that have this type
1 2 3 4 nodes 1, 2, 3 and 4 make up a quadrilateral face

Note: If the face is triangular (only has 3 nodes), you must specify the fourth vertex as zero.

Caution: A single boundary type can be broken into several sections if you prefer. Also, boundary
face sections do not have to be in order. You may have a section of 10 faces of type 3, followed by a
section of 20 faces of type 2, followed by a section of 15 more faces of type 3. However, note that
breaking a boundary type into very many short sections is less efficient. The boundaries will require
more memory and be somewhat slower to calculate in FieldView. Also note that you cannot mix stan-
dard (triangular and quadrilateral) faces and arbitrary polygon boundary faces in the same section.

Next, a section for the boundary surface of type top is written.

ibuf[0] = FV_FACES;
ibuf[1] = 2; /* second boundary type */
ibuf[2] = 1; /* number of faces of this type */
fwrite(ibuf, sizeof(int), 3, outfp);
fwrite(top_faces, sizeof(int), 4, outfp);

1002 2 1
9 10 12 11

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 443

Table of ContentsIndex

Next, a section for the boundary surface of type wall is written.

ibuf[0] = FV_FACES;
ibuf[1] = 3; /* third boundary type */
ibuf[2] = 8; /* number of faces of this type */
fwrite(ibuf, sizeof(int), 3, outfp);
fwrite(wall_faces, sizeof(int), 8*4, outfp);

1002 3 8
1 2 6 5
5 6 10 9
3 4 8 7
7 8 12 11
1 3 7 5
5 7 11 9
2 4 8 6
6 8 12 10

The Arbitrary Polygon Boundary Face section(s) is (are) next. The semantics are the same as for
standard boundary faces. If you are not specifying arbitrary polygon boundary faces, you can skip
specifying this section completely. There are one or more separate sections for each boundary face
type, as in the case for standard boundary faces. The node ordering for specifying faces should follow
the right-handed rule (see FieldView Compliance for Unstructured Data on page 420 for more
information). In other words, nodes should be given by walking around the perimeter of the face in a
counter-clockwise manner. Hanging nodes are not permitted on boundary faces. In the example pre-
sented herein (see code in /uns subdirectory of the directory where FieldView is installed), there are
two Arbitrary Polygon Boundary Face sections, one for the trimmed node cell, and one for the hanging
node cell (the cells are shown in the section on Arbitrary Polyhedron Cells on page 417).

All Standard Boundary Face sections must be written before any Arbitrary Boundary Face sections.

Each Arbitrary Polygon Boundary Face section starts with a header word FV_ARB_POLY_FACES,
boundary face type and the number of faces for the section. The boundary face type for trimmed cell
is 4, and the number of faces of this type is 7.

1007 ibuf[0] = FV_ARB_POLY_FACES;
4 ibuf[1] = 4; /* boundary face type */
7 ibuf[2] = 7; /*num faces for the trimmed cell*/

fwrite(ibuf, sizeof(int), 3, outfp);

Next, there is a loop over the faces of type trimmed cell to write cell nodes:

for(i = 0; i < num_faces_trim_cell; ++i) /* loop over the faces */
fwrite(trim_cell_face[i], sizeof(int), trim_cell_face[i][0] + 1,

outfp);

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 444

Table of ContentsIndex

5 13 14 15 16 17
3 16 18 17
5 15 21 20 18 16
5 13 17 18 20 19
4 13 19 22 14
4 14 22 21 15
4 19 20 21 22

The boundary face type for hanging node cell is 5, and the number of faces of this type is 6.

ibuf[0] = FV_ARB_POLY_FACES;
ibuf[1] = 5; /* boundary face type */
ibuf[2] = 6; /* num faces for the hanging node cell */
fwrite(ibuf, sizeof(int), 3, outfp);

1007 5 6

Next, there is a cycle over the faces of type hanging node cell to write cell nodes:

for(i = 0; i < num_faces_hang_cell; ++i) /* loop over the faces */
fwrite(hang_cell_face[i], sizeof(int), hang_cell_face[i][0] + 1,

outfp);

5 20 21 24 25 26
5 24 29 28 27 25
7 20 26 25 27 28 30 19
4 20 19 22 21
4 21 22 29 24
5 22 19 30 28 29

The following sections are 3D element sections. There may be as many element sections as needed.
Each section may consist of as many elements as needed. There are two kinds of 3D element sec-
tions: Standard 3D Element section and Arbitrary Polyhedron section. Each Standard 3D Element
section may contain a single element type or a mixture of standard element types (tetrahedron, hexa-
hedron, prism, pyramid). Standard Element sections may be written before, after, or in-between Arbi-
trary Polyhedron sections. For maximum efficiency, each Standard 3D Element section should contain
a significant percentage of the elements of the grid.

The next section is a Standard 3D Element section. It starts with the FV_ELEMENTS keyword and
includes the number of standard elements of each type (tetrahedron, hexahedron, prism, pyramid).

ibuf[0] = FV_ELEMENTS;
ibuf[1] = 0; /* tet count */
ibuf[2] = 2; /* hex count */
ibuf[3] = 0; /* prism count */

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 445

Table of ContentsIndex

ibuf[4] = 0; /* pyramid count */
fwrite(ibuf, sizeof(int), 5, outfp);

1003 0 2 0 0

where

1003 header signifying the start of the elements section
0 number of tetrahedrons
2 number of hexahedrons
0 number of prisms
0 number of pyramids

The standard elements within the Standard 3D Element section can be written in any order, without
regard to element type. For each element, a header for that element is written. The header is followed
by the node definition for the element. The proper header value is generated by a call to fv_en-
code_elem_header (found in the sample source write_binary_uns.c in the /uns directory).
This C routine packs the information about the element type and wall flags into a four byte word that is
called the element header. The 3D element face wall flags indicate whether a particular element face
should be treated as a wall in streamline computations. Note that the wall flag data contained in the
header is only used during streamline calculation; the data is not used as boundary types.

The 3D element types are: 1-tetrahedron, 2-hexahedron, 3-prism, 4-pyramid. See Stan-
dard 3D element types on page 415 for node numbering information.

/* Write header for first element. */
elem_header = fv_encode_elem_header(FV_HEX_ELEM_ID, hex1_walls);
if (elem_header == 0)
{
fprintf (stderr, "fv_encode_elem_header failed for first hex.\n");
exit(1);
 }
fwrite (&elem_header, sizeof(elem_header), 1, outfp);

First element header – four byte word

/* Write node definition for first element. */
fwrite(hex1, sizeof(int), 8, outfp);

1 2 3 4 5 6 7 8

/* Write header for second element. */
elem_header = fv_encode_elem_header(FV_HEX_ELEM_ID, hex2_walls);
if (elem_header == 0)
{
fprintf (stderr, "fv_encode_elem_header failed for second hex.\n");

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 446

Table of ContentsIndex

exit(1);
}

fwrite (&elem_header, sizeof(elem_header), 1, outfp);

Second element header – four byte word

/* Write node definition for second element. */
fwrite(hex2, sizeof(int), 8, outfp);

5 6 7 8 9 10 11 12

Important Note: The ordering of the nodes within an element is important. See Figure 151 in
this appendix for details.

The next section is for specifying Arbitrary Polyhedron Elements. This section is not required to be
present. If you are not specifying arbitrary polyhedron elements, you can skip this section altogether.
The section consists of one or more arbitrary polyhedron elements. The section starts with the key-
word FV_ARB_POLY_ELEMENTS.

The wall flag for arbitrary polyhedron elements has the same meaning as for standard elements (in
standard element headers), i.e. A_WALL or NOT_A_WALL (see fv_reader_tags.h file in /uns
subdirectory of the directory where FieldView is installed). The wall flag information is used in stream-
line computations. The node ordering for specifying faces should be consistent; if one face is clock-
wise, then all faces of the cell must be clockwise. Hanging nodes are associated with a face interior
and should not be on an edge (hanging nodes on an edge should be specified as regular arbitrary
polygon boundary face nodes).

In the example presented herein (see code in /uns subdirectory of the directory where FieldView is
installed) there are two arbitrary polyhedron elements: a trimmed cell element and a hanging node
element (the cells are shown in Arbitrary Polyhedron Cells on page 417). The section starts with
the FV_ARB_POLY_ELEMENTS keyword and the number of elements.

ibuf[0] = FV_ARB_POLY_ELEMENTS;
ibuf[1] = 2; /* have 2 elements here */
fwrite(ibuf, sizeof(int), 2, outfp);

1008 2

After that, the number of faces, the number of nodes (including the center node if there is one), and the
center node number are written for the trimmed cell element. The center node number should be
specified as a negative number if there is not a center node.

/* trimmed face element */
ibuf[0] = 7; /* num faces for the trimmed cell */

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 447

Table of ContentsIndex

ibuf[1] = 11; /* number of nodes including a center node */
ibuf[2] = 23; /* the center node */
fwrite(ibuf, sizeof(int), 3, outfp);

7 11 23

Next, there is a cycle over the faces of the trimmed cell element to write for each face: wall value,
number of vertices for the face, node numbers for vertices of the face. In this example, all faces for the
element are assumed to be walls. All faces for the element are assumed not to have hanging nodes
on them.

ibuf[0] = A_WALL; /* wall value */
ibuf[1] = 0; /* number of hanging nodes */

for(i = 0; i < num_faces_trim_cell; ++i) /* write out face info */
{
fwrite(ibuf, sizeof(int), 1, outfp); /* write wall value */
fwrite(trim_cell_face[i], sizeof(int), trim_cell_face[i][0] + 1,

outfp); /* write num verts and verts */
fwrite(&ibuf[1], sizeof(int), 1, outfp); /* write num hang nodes */

}

7 5 13 14 15 16 17 0
7 3 16 18 17 0
7 5 15 21 20 18 16 0
7 5 13 17 18 20 19 0
7 4 13 19 22 14 0
7 4 14 22 21 15 0
7 4 19 20 21 22 0

After that, number of faces, number of provided nodes (no center node exists for the cell), and "–1"
for the center node number are written for the hanging node element. A negative integer number for
the center node tells FieldView that there is no center node specified for this cell.

/* hanging node element */
ibuf[0] = 6; /* num faces for the hanging node cell */
ibuf[1] = 12; /* number of nodes including a center node */
 /* (if center node exists) */
ibuf[2] = -1; /* the center node, this indicates that there
 ** is no centernode */
fwrite(ibuf, sizeof(int), 3, outfp);

6 12 -1

Next, the following data is written for each face of the trimmed cell element: wall value, number of ver-
tices for the face, node numbers for vertices of the face. All faces for the element are assumed to be

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 448

Table of ContentsIndex

walls. All faces for the element except face 3 are assumed not to have hanging nodes at them. Face
3 has one hanging node. Node number for the hanging node is 31.

ibuf[0] = A_WALL; /* wall value */
ibuf[1] = 0; /* number of hanging nodes */
ibuf[2] = 1; /* number of hanging nodes for face 3 */
ibuf[3] = 31; /* the node number for the hanging node on face 3*/
for(i = 0; i < 2; ++i) /* write out face info for first 2 faces */
{
fwrite(ibuf, sizeof(int), 1, outfp); /* write wall value */
fwrite(hang_cell_face[i], sizeof(int), hang_cell_face[i][0] + 1,

outfp); /* write num verts and verts */
fwrite(&ibuf[1], sizeof(int), 1, outfp); /* write num hang nodes */

}

7 5 20 21 24 25 26 0
7 5 24 29 28 27 25 0

/* this face has a hanging node */
fwrite(ibuf, sizeof(int), 1, outfp);
fwrite(hang_cell_face[2], sizeof(int), hang_cell_face[2][0] + 1,
outfp);
fwrite(&ibuf[2], sizeof(int), 2, outfp);

7 7 20 26 25 27 28 30 19 1 31

/* write out face info for last 3 faces */
for(i = 3; i < num_faces_hang_cell; ++i)

{
fwrite(ibuf, sizeof(int), 1, outfp); /* write wall value */
fwrite(hang_cell_face[i], sizeof(int), hang_cell_face[i][0] + 1,

outfp); /* write num verts and verts */
fwrite(&ibuf[1], sizeof(int), 1, outfp); /* write num hang nodes */

}

7 4 20 19 22 21 0
7 4 21 22 29 24 0
7 5 22 19 30 28 29 0

Note: The arbitrary polyhedron element section(s) can appear before, after, or in-between
standard 3D element (tetrahedron, pyramid, prism, hexahedron) sections. There can be any
number of both arbitrary polyhedron element sections and standard 3D element sections for
any grid. The only requirement is to start each section of standard 3D elements with
FV_ELEMENTS keyword, and to start each section of arbitrary polyhedron elements with

FV_ARB_POLY_ELEMENTS keyword.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 449

Table of ContentsIndex

Next, the variable section is listed. This begins with a header, followed by the results of each variable.
Note that the results are in single precision. This section header is required even if the number of vari-
ables is zero.

ibuf[0] = FV_VARIABLES;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_vars; i++)
 fwrite(vars[i], sizeof(float), nnodes, outfp);

1004
1.0 0.1 1.2 0.1
1.1 0.2 1.1 0.2
…
1.18 1.18 1.18 1.18

(124 real numbers - 4 variables for 31 nodes)

Note: One needs to write out all of the results, in node order, for variable 1 (in this case
pressure), then all of the results, in node order, for variable 2 (in this case u-velocity),
etc. All of the data for the first variable is output before any of the data for the second variable.
The total number of real numbers should match the number of nodes times the number of
variables.

Next, the section that contains boundary variable data for standard boundary faces (quadrilaterals and
triangles) is written. Remember that the Boundary Table above has a surface results flag indicating
which boundary types have face data (surface results). The data should be written in the same order
as the faces in the Boundary Faces sections, skipping over faces whose boundary type has a surface
results flag of zero (false). For each variable, you should write one number per boundary face. You
must write the section header even if the number of boundary variables is zero.

ibuf[0] = FV_BNDRY_VARS;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_bvars; i++) {
int num_faces;
num_faces = 1; /* number of bottom faces */
fwrite(&bot_bvars[i],sizeof(float),num_faces,outfp);
num_faces = 1; /* number of top faces */
fwrite(&top_bvars[i],sizeof(float),num_faces,outfp);
 }
1006
5.1 1.0
5.6 2.0
5.1 4.0
3.0 2.5

For each boundary variable, the boundary variable values for all standard faces are written. In the
example presented herein, the first boundary variable value is written for the boundary of the type

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 450

Table of ContentsIndex

bottom, since the boundary was written first in the Boundary Types section. The first boundary vari-
able value for the boundary of the type top follows variable value for the boundary of the type bot-
tom. The boundary variable values for the boundary of the type wall are skipped, since the surface
results flag for the wall boundary type was 0 (false) in the Boundary Types section. All of the data
for the first boundary variable (at standard faces) is output before any of the data for the second vari-
able. After that, the data for the third variable is written. Finally, the data for the fourth variable is writ-
ten. The total number of real numbers in the section should match the number of boundary variables
times the number of standard boundary faces (quadrilaterals and triangles) that belong to a boundary
of a particular type times the number of boundary types that have surface results flag 1 (true).

Next, the section that contains boundary variable data for arbitrary polygon boundary faces is written.
This section should always appear after the section that contains boundary variable data for the stan-
dard boundary faces (if faces of both standard and arbitrary polygon boundary faces are present in the
dataset). Remember that the Boundary Table above has a surface results flag indicating which bound-
ary types have face data (surface results). The data should be written in the same order as the faces
in the Arbitrary Polygon Boundary Face sections, skipping over faces whose boundary type has a sur-
face results flag of zero (false). For each variable, you should write one number per arbitrary polygon
boundary face.

ibuf[0] = FV_ARB_POLY_BNDRY_VARS;
fwrite(ibuf, sizeof(int), 1, outfp);
for (i = 0; i < num_bvars; ++i)
{

int num_faces;
num_faces = 7; /* num faces for the trimmed cell */
fwrite(trim_cell_bvars[i], sizeof(float), num_faces, outfp);
num_faces = 6; /* num faces for the hanging node cell */
fwrite(hang_cell_bvars[i], sizeof(float), num_faces, outfp);
}

1009
1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.1 1.11 1.12 1.13 1.14 1.15
1.7 1.8 1.9 1.1 1.11 1.12 1.13
1.16 1.17 1.18 1.19 1.2 1.21
1.14 1.15 1.16 1.17 1.18 1.19 1.2
1.22 1.23 1.24 1.25 1.26 1.27
1.21 1.22 1.23 1.24 1.25 1.26 1.27
1.28 1.29 1.30 1.31 1.32 1.33

Closing of the file:

if (fclose(outfp) != 0)
 {
perror ("Cannot close output file");
exit(1);

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 451

Table of ContentsIndex

 }

Unformatted (FORTRAN 77) Format
General Remarks on Unformatted (FORTRAN 77) Format
Unformatted files are created with FORTRAN. All of the information in this section assumes FOR-
TRAN 77, unless otherwise specifically mentioned. All strings must be written as a record of 80 char-
acters. All characters after the first null character (if any) are discarded. There are no explicit end of
file characters. Comment lines are not allowed in unformatted format.

Split Unformatted (FORTRAN 77) Format
General Remarks on Split Unformatted (FORTRAN 77) Format
In the Split Unformatted (FORTRAN 77) format grid data and results data are stored separately in two
files. Sample FORTRAN 77 code, called write_split_unformatted_uns.F, has been included
in the subdirectory /uns of the directory where FieldView is installed. This sample file provides a
framework for use with your own writer and includes tips for easier application. All parameter defini-
tions (FV_MAGIC, FV_ELEMENTS, etc.) can be found in the header file ftn_fv_reader_tags.h in
the subdirectory /uns of the directory where FieldView is installed. The sample file also contains the
useful subroutine ftn_encode_header. This will be used in the code samples below.

Grid File in Split Unformatted (FORTRAN 77) Format
The first section contains an open statement for the grid file:

 iunit = 16
 open (unit=iunit,
 + file='four_hex_grids.uns',
 + status='UNKNOWN', form='UNFORMATTED',
 + iostat=istat)
 if (istat .ne. 0) then
 print *,'Cannot open file'
 stop 1
 endif

The next section contains a bit pattern to identify the file to FieldView. The section must be as follows:

c Output the magic number.
 write(iunit) FV_MAGIC

66051

The next section contains a string as shown. Strings must be padded to 80 characters. This is accom-
plished by copying them into the 80-character string txt (in the sample code):

c Output file header
 txt = 'FieldView'

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 452

Table of ContentsIndex

 write(iunit) txt

FieldView

Next, the version numbers for the format must be written as shown:

c This version of the FieldView unstructured file is "3.0"
c This is written as two integers.
c File type code - new in version 2.7.
c Reserved field, always write a zero –
c new in version 2.6.
 write(iunit) 3, 0, FV_GRIDS_FILE, 0

3 0 1 0

Next, the number of grids must be written. Separating your data into multiple grids is needed in order
to use FieldView region grouping capabilities. One or more grids may be associated with a region via
FieldView Region File (see Chapter 3 of the Reference Manual for more information on region files).
If regions are not to be used, writing multiple grids is still beneficial, as the Grid File will then be suit-
able for the Grid-Parallel FieldView Server Input options.

c Output the number of grids.
 ngrids=1
 write(iunit) ngrids

1

Each face of any element may have its own unique type for association with a boundary surface. The
next section contains the number of different boundary types (which in this case is equal to 5):

c Output the table of boundary types, starting
c with the number of types.
 write(iunit) 5

5

The next section contains the name of each boundary type preceded by the two integer flags for Sur-
face Results and Clockness respectively. The clockness of surface normals is only used for calculat-
ing certain boundary surface integrals that involve surface normals. If the surface normals flag is 0,
these special integrals will not be available. There must be as many entries as were specified in the
previous section. Strings must be written as a record of 80 characters. The boundary type names
may contain blanks. Boundary type names should always start with a letter. Each boundary type
name should be different from all other boundary type names. The comparison of names is case-
insensitive.

Surface Results Flag = 1 implies face based results present

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 453

Table of ContentsIndex

= 0 implies no face based results present

Clockness Flag = 1 implies consistent clockness
(for component integral results output)

= 0 implies no consistent clockness

c We insert a space between the flags and the type name,
c to make it easier to read the ASCII format unstructured file.
 txt = 'bottom'
 write(iunit) 1, 1, txt
 txt = 'top'
 write(iunit) 1, 1, txt
 txt = 'wall'
 write(iunit) 0, 0, txt
 txt = 'trimmed cell'
 write(iunit) 1, 1, txt
 txt = 'hanging node cell'
 write(iunit) 1, 1, txt

1 1 bottom
1 1 top
0 0 wall
1 1 trimmed cell
1 1 hanging node cell

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section contains the node information for the grid being written. First a header word
FV_NODES with a numeric field signifies the section number. Next, the number of nodes in this grid is
written.

c Output node definition section for this grid.
 write(iunit) FV_NODES, 31

1001 31

This is followed by all of X, all of Y, and all of Z coordinates for all nodes in this grid. Note that all X
coordinates are output first, then all Y and finally all Z, and that all coordinates are output in a single
unformatted write statement:

c Output node definition section for this grid.
 write(iunit)x, y, z

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 454

Table of ContentsIndex

-1. -1. 1. 1. -1. -1. 1. 1. -1. -1. 1. 1. 2. 2. 3. 3. 2.5 3. 2. 3. 3. 2. 2.5
3. 3. 3. 2.5 2. 2. 2.0 2.5
-1. -1. -1. -1. 1. 1. 1. 1. 3. 3. 3. 3. 0. 0. 0. 0. 0. .5 1. 1. 1. 1. .5 2.
2. 1.5 2. 2. 2. 1.45 1.5
-1. 1. -1. 1. -1. 1. -1. 1. -1. 1. -1. 1. 1. 0. 0. .5 1. 1. 1. 1. 0. 0. .5
0. 1. 1. 1. 1. 0. 1. 1.

The Standard Boundary Face section(s) for standard 2D elements is (are) next, starting with a header
word FV_FACES. Next, you must specify the boundary type (based upon the table above), the num-
ber of faces of this type, and then the vertices of each face. In the example presented herein, for the
boundary types of bottom (1 face), top (1 face) and wall (8 faces), the Standard Boundary Face
sections are as follows:

c Output boundary faces of the 3 types.
 write(iunit) FV_FACES, 1, 1
 write(iunit) bot_faces
 write(iunit) FV_FACES, 2, 1
 write(iunit) top_faces
 write(iunit) FV_FACES, 3, 8
 write(iunit) wall_faces

1002 1 1
1 2 4 3
1002 2 1
9 10 12 11
1002 3 8
1 2 6 5
5 6 10 9
3 4 8 7
7 8 12 11
1 3 7 5
5 7 11 9
2 4 8 6
6 8 12 10

where

1002 header signifying the start of the face section
1 specifies boundary type bottom, the first type in the table above
1 the number of separate faces that have this type
1 2 4 3 face node numbers
1002 header signifying the start of the face section
2 specifies boundary type top, the second type in the table above
1 the number of separate faces that have this type
9 10 12 11 face node numbers
1002 header signifying the start of the face section

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 455

Table of ContentsIndex

3 specifies boundary type wall, the third type in the table above
8 the number of separate faces that have this type
1 2 6 5 (etc...) face node numbers

Note: If the face is triangular (only has 3 nodes), you must specify the fourth vertex as zero.

Caution: A single boundary type can be broken into several sections if you prefer. Also, boundary
face sections do not have to be in order. You may have a section of 10 faces of type 3, followed by a
section of 20 faces of type 2, followed by a section of 15 more faces of type 3. However, note that
breaking a boundary type into very many short sections is less efficient. The boundaries will require
more memory and be somewhat slower to calculate in FieldView. Also note that you cannot mix stan-
dard (triangular and quadrilateral) faces and arbitrary polygon boundary faces in the same section.

The Arbitrary Polygon Boundary Face section(s) is (are) next. The semantics are the same as for
standard boundary faces. If you are not specifying arbitrary polygon boundary faces, you can skip
specifying this section completely. There are one or more separate sections for each boundary face
type, as in the case for standard boundary faces. The node ordering for specifying faces should follow
the right-handed rule (see FieldView Compliance for Unstructured Data on page 420 for more
information). In other words, nodes should be given by walking around the perimeter of the face in a
counter-clockwise manner. Hanging nodes are not permitted on boundary faces. In the example pre-
sented herein (see code in /uns subdirectory of the directory where FieldView is installed), there are
two Arbitrary Polygon Boundary Face sections, one section for trimmed node cell, and another
one for hanging node cell (the cells are shown in the section on Arbitrary Polyhedron Cells on
page 417).

All Standard Boundary Face sections must be written before any Arbitrary Boundary Face sections.

Each Arbitrary Polygon Boundary Face section starts with a header word FV_ARB_POLY_FACES,
boundary face type and the number of faces for the section. Boundary face type for trimmed cell
is 4, and the number of faces of this type is 7.

 write(iunit) FV_ARB_POLY_FACES,4,7

1007 4 7

Next, there is a loop over the faces of type trimmed cell to write cell nodes:

 write(iunit) 5, (trim_cell_face(i,1), i=1,5),
 + 3, (trim_cell_face(i,2), i=1,3),
 + 5, (trim_cell_face(i,3), i=1,5),
 + 5, (trim_cell_face(i,4), i=1,5),
 + 4, (trim_cell_face(i,5), i=1,4),
 + 4, (trim_cell_face(i,6), i=1,4),

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 456

Table of ContentsIndex

 + 4, (trim_cell_face(i,7), i=1,4)

5 13 14 15 16 17
3 16 18 17
5 15 21 20 18 16
5 13 17 18 20 19
4 13 19 22 14
4 14 22 21 15
4 19 20 21 22

Boundary face type for hanging node cell is 5, and the number of faces of this type is 6.

 write(iunit) FV_ARB_POLY_FACES,5,6

1007 5 6

Next, there is a cycle over the faces of type hanging node cell to write cell nodes:

 write(iunit) 5, (hang_cell_face(i,1), i=1,5),
 + 5, (hang_cell_face(i,2), i=1,5),
 + 7, (hang_cell_face(i,3), i=1,7),
 + 4, (hang_cell_face(i,4), i=1,4),
 + 4, (hang_cell_face(i,5), i=1,4),
 + 5, (hang_cell_face(i,6), i=1,5)

5 20 21 24 25 26
5 24 29 28 27 25
7 20 26 25 27 28 30 19
4 20 19 22 21
4 21 22 29 24
5 22 19 30 28 29

The following sections are 3D element sections. There may be as many element sections as needed.
Each section may consist of as many elements as needed. There are two kinds of 3D element sec-
tions: Standard 3D Element section and Arbitrary Polyhedron section. Each Standard 3D Element
section may contain a single element type or a mixture of standard element types (tetrahedron, hexa-
hedron, prism, pyramid). Standard Element sections may be written before, after, or in-between Arbi-
trary Polyhedron sections. For maximum efficiency, each Standard 3D Element section should contain
a significant percentage of the elements of the grid.

The next section is a Standard 3D Element section. It starts with the FV_ELEMENTS keyword and
includes the number of standard elements of each type (tetrahedron, hexahedron, prism, pyramid).

c This element section contains 2 hexes.
 write(iunit) FV_ELEMENTS, 0, 2, 0, 0

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 457

Table of ContentsIndex

1003 0 2 0 0

where

1003 header signifying the start of the elements section
0 number of tetrahedrons
2 number of hexahedrons
0 number of prisms
0 number of pyramids

The standard elements within the Standard 3D Element section can be written in any order, without
regard to element type. For each element, a header for that element is written. The header is followed
by the node definition for the element. The proper header value is generated by a call to ftn_en-
code_header (found in the sample source write_split_unformatted_uns.F in the /uns
directory where FieldView is installed). This FORTRAN routine packs the information about the ele-
ment type and wall flags into a four byte word that is called the element header. The 3D element face
wall flags indicate whether a particular element face should be treated as a wall in streamline compu-
tations. Note that the wall flag data contained in the header is only used during streamline calculation;
the data is not used as boundary types.

The 3D element types are: 1-tetrahedron, 2-hexahedron, 3-prism, 4-pyramid. See Stan-
dard 3D element types on page 415 for node numbering information.

The element header and node definition information must be written with a single unformatted write
statement for all of the elements belonging to a given section.

c The headers and node definitions of all the elements in the section.
c This must be written with a single unformatted write statement.
 write(iunit) (headers(i), (hexes(j,i),j=1,8), i=1,num_elems)

First element header – four byte word
1 2 3 4 5 6 7 8

Second element header – four byte word
5 6 7 8 9 10 11 12

Important Note: The ordering of the nodes within an element is important. See Figure 150 in
this appendix for details.

The next section is for specifying Arbitrary Polyhedron Elements. This section is not required to be
present. If you are not specifying arbitrary polyhedron elements, you can skip this section altogether.
The section consists of one or more arbitrary polyhedron elements. The section starts with the key-
word FV_ARB_POLY_ELEMENTS.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 458

Table of ContentsIndex

The wall flag for arbitrary polyhedron elements has the same meaning as for standard elements (in
standard element headers), i.e. A_WALL or NOT_A_WALL (see ftn_fv_reader_tags.h file in /
uns subdirectory of the directory where FieldView is installed). The wall flag information is used in
streamline computations. The node ordering for specifying faces should be consistent; if one face is
clockwise, then all faces of the cell must be clockwise. Hanging nodes are associated with a face inte-
rior and should not be on an edge (hanging nodes on an edge should be specified as regular arbitrary
polygon boundary face nodes).

In the example presented herein (see code in /uns subdirectory of the directory where FieldView is
installed) there are two arbitrary polyhedron elements: a trimmed cell element and a hanging node
element (the cells are shown in Arbitrary Polyhedron Cells on page 417). The section starts with
the FV_ARB_POLY_ELEMENTS keyword and the number of elements.

 write(iunit) FV_ARB_POLY_ELEMENTS, 2

1008 2

After that, the number of faces, the number of nodes (including the center node if there is one), and the
center node number are written for the trimmed cell element. The center node number should be
specified as a negative number if there is not a center node.

Next, for each face of the trimmed cell element the following values are written: wall value, number of
vertices for the face, node numbers for vertices of the face. In this example, all faces for the element
are assumed to be walls. All faces for the element are assumed not to have hanging nodes on them.

After that, the number of faces, the number of provided nodes (no center node exists for the cell), and
a "-1" for the center node number are written for the hanging node element. A negative integer
number for the center node tells FieldView to compute the center node coordinates and variable val-
ues associated with it.

Next, the following data is written for each face of the trimmed cell element: wall value, number of ver-
tices for the face, node numbers for vertices of the face. All faces for the element are assumed to be
walls. All faces for the element except face 3 are assumed not to have hanging nodes at them. Face
3 has one hanging node. Node number for the hanging node is 31.

 write(iunit) 7, 11, 23,
 + A_WALL, 5, (trim_cell_face(i,1), i=1,5), 0,
 + A_WALL, 3, (trim_cell_face(i,2), i=1,3), 0,
 + A_WALL, 5, (trim_cell_face(i,3), i=1,5), 0,
 + A_WALL, 5, (trim_cell_face(i,4), i=1,5), 0,
 + A_WALL, 4, (trim_cell_face(i,5), i=1,4), 0,
 + A_WALL, 4, (trim_cell_face(i,6), i=1,4), 0,
 + A_WALL, 4, (trim_cell_face(i,7), i=1,4), 0,
 + 6, 12, -1,
 + A_WALL, 5, (hang_cell_face(i,1), i=1,5), 0,
 + A_WALL, 5, (hang_cell_face(i,2), i=1,5), 0,

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 459

Table of ContentsIndex

 + A_WALL, 7, (hang_cell_face(i,3), i=1,7), 1, 31,
 + A_WALL, 4, (hang_cell_face(i,4), i=1,4), 0,
 + A_WALL, 4, (hang_cell_face(i,5), i=1,4), 0,
 + A_WALL, 5, (hang_cell_face(i,6), i=1,5), 0

7 11 23
7 5 13 14 15 16 17 0
7 3 16 18 17 0
7 5 15 21 20 18 16 0
7 5 13 17 18 20 19 0
7 4 13 19 22 14 0
7 4 14 22 21 15 0
7 4 19 20 21 22 0
6 12 -1
7 5 20 21 24 25 26 0
7 5 24 29 28 27 25 0
7 7 20 26 25 27 28 30 19 1 31
7 4 20 19 22 21 0
7 4 21 22 29 24 0
7 5 22 19 30 28 29 0

Note: The arbitrary polyhedron element section(s) can appear before, after, or in-between
standard 3D element (tetrahedron, pyramid, prism, hexahedron) sections. There can be any
number of both arbitrary polyhedron element sections and standard 3D element sections for
any grid. The only requirement is to start each section of standard 3D elements with
FV_ELEMENTS keyword, and to start each section of arbitrary polyhedron elements with

FV_ARB_POLY_ELEMENTS keyword.

Closing of grid file:

 close(iunit)

Results File in Split Unformatted (FORTRAN 77) Format
The first section contains an open statement for results file:

 iunit = 16
 open (unit=iunit, file='four_hex_results.uns',
 + status='UNKNOWN', form='UNFORMATTED',
 + iostat=istat)
 if (istat .ne. 0) then
 print *,'Cannot open file'
 stop 1
 endif

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 460

Table of ContentsIndex

The next section contains a bit pattern to identify the file to FieldView. The section must be as follows:

c Output the magic number.
 write(iunit) FV_MAGIC

66051

The next section contains a string as shown. Strings must be padded to 80 characters. This is accom-
plished by copying them into the 80-character string txt (in the sample code):

c Output file header
 txt = 'FieldView'
 write(iunit) txt

FieldView

Next, the version numbers for the format must be written as shown:

c This version of the FieldView unstructured file is "3.0".
c This is written as two integers.
c File type code FV_RESULTS_FILE – to identify
c the content of the file as results only -
c new in version 2.7.
c Reserved field, always write a zero –
c new in version 2.6.
 write(iunit) 3, 0, FV_RESULTS_FILE, 0

3 0 2 0

Next is the solution time, TIME, and 3 constants, FSMACH, ALPHA and RE that may be used by the
"CFD Calculator". If your results are not transient, you should put a floating point zero for the time
value. Similarly, if you do not wish to use these constants, use zero for these values as well.

The solution time and the 3 constants are all floating point numbers.

c Output constants for time, fsmach, alpha, re
 write(iunit) 1., 0., 0., 0.

1. 0. 0. 0.

Next, the number of grids must be written:

c Output the number of grids.
 write(iunit) ngrids

1

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 461

Table of ContentsIndex

The next section contains the number of volume (nodal) variables in the file, followed by the names of
the variables. When listing the names of the variables, a vector is indicated by following the first com-
ponent of the vector with a semicolon and the name of the vector. This will indicate that this variable
and the next two listed are the three components of the vector (note that a vector is counted as three
variables). The variable names may contain blanks.

Note: The number of variables can be zero, meaning the file contains no information on vol-
ume variables. If this is the case, the number of variables, "0", still has to be present in the
file.

c Output the table of variable names,
c starting with the number of variables.
c The number of variables can be zero.
 nvars = 4
 write(iunit) nvars
 txt = 'pressure'
 write(iunit) txt
 txt = 'uvel; velocity'
 write(iunit) txt
 txt = 'vvel'
 write(iunit) txt
 txt = 'wvel'
 write(iunit) txt

4
pressure
uvel; velocity
vvel
wvel

The next section contains the number and names of boundary variables in the file. Boundary variables
are associated with boundary faces, rather than with grid nodes. FieldView will automatically append
[BNDRY] to each name so boundary variables can be easily distinguished from ordinary (grid node)
variables. The number of boundary variables can be different from the number of ordinary variables.
The number of boundary variables can also be zero.

c Output the table of boundary variable names,
c starting with the number of boundary variables.
c The number of boundary variables can be zero.
 nbvars = 4
 write(iunit) nbvars
 txt = 'temperature'
 write(iunit) txt
 txt = 'uvel; velocity'

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 462

Table of ContentsIndex

 write(iunit) txt
 txt = 'vvel'
 write(iunit) txt
 txt = 'wvel'
 write(iunit) txt

4
pressure
uvel; velocity
vvel
wvel

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section contains some node information for the grid. First the header word FV_NODES is
written. Next, the number of nodes in this grid is written. It should be the same as the number of
nodes in the corresponding grid file.

c Output node definition section for this grid.
 write(iunit) FV_NODES, 31

1001 31

Next, the variable section is listed. This begins with a header, followed by the results of each variable.
Note that the results are in single precision. This section header is required even if the number of vari-
ables is zero. The variable data must be written with a single unformatted write statement for the
entire grid.

c Output the variable data for this grid.
c This must be a single unformatted write statement.
c The variables must be in the same order as the "Variable Names"
 write(iunit) FV_VARIABLES
 if (nvars .gt. 0) then
 write(iunit) vars
 endif

1004
1.0 0.1 1.2 0.1
1.1 0.2 1.1 0.2
…
1.18 1.18 1.18 1.18
(124 real numbers - 4 variables for 31 nodes)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 463

Table of ContentsIndex

Note: One needs to write out all of the results, in node order, for variable 1 (in this case
pressure), then all of the results, in node order, for variable 2 (in this case u-velocity),
etc. All of the data for the first variable is output before any of the data for the second variable.
The total number of real numbers should match the number of nodes times the number of
variables.

Next, the section that contains boundary variable data for standard boundary faces (quadrilaterals and
triangles) is written. Remember that the Boundary Table above has a surface results flag indicating
which boundary types have face data (surface results). The data should be written in the same order
as the faces in the Boundary Faces sections, skipping over faces whose boundary type has a surface
results flag of zero (false). For each variable, you should write one number per boundary face. You
must write the section header even if the number of boundary variables is zero.

The boundary face data must be written with a single unformatted write statement for the entire grid.

 write(iunit) FV_BNDRY_VARS
 if (nbvars .gt. 0) then
c NOTE: If this grid has no faces with surface results, then
c do NOT write an empty record. For grids with no surface
c results, you should skip the following write statement.
 write(iunit) (bot_bvars(i),top_bvars(i),i=1,nbvars)
 endif

1006
5.2 1.0
5.7 2.0
5.2 4.0
3.0 2.5

For each boundary variable, the boundary variable values for all standard faces are written. In the
example presented herein, the first boundary variable value is written for the boundary of the type
bottom, since the boundary was written first in the Boundary Types section. The first boundary vari-
able value for the boundary of the type top follows variable value for the boundary of the type bot-
tom. The boundary variable values for the boundary of the type wall are skipped, since the surface
results flag for the wall boundary type was 0 (false) in the Boundary Types section. All of the data
for the first boundary variable (at standard faces) is output before any of the data for the second vari-
able. After that, the data for the third variable is written. Finally, the data for the fourth variable is writ-
ten. The total number of real numbers in the section should match the number of boundary variables
times the number of standard boundary faces (quadrilaterals and triangles) that belong to a boundary
of a particular type times the number of boundary types that have surface results flag 1 (true).

Note: There is no header word '1005'.

Next, the section that contains boundary variable data for arbitrary polygon boundary faces is written.
This section should always appear after the section that contains boundary variable data for the stan-
dard boundary faces (if faces of both standard and arbitrary polygon boundary faces are present in the

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 464

Table of ContentsIndex

dataset). Remember that the Boundary Table above has a surface results flag indicating which bound-
ary types have face data (surface results). The data should be written in the same order as the faces
in the Arbitrary Polygon Boundary Face sections, skipping over faces whose boundary type has a sur-
face results flag of zero (false). For each variable, you should write one number per arbitrary polygon
boundary face.

 write(iunit) FV_BNDRY_VARS
 if (nbvars .gt. 0) then
 write(iunit) (bot_bvars(i),top_bvars(i),i=1,nbvars)
 endif

1006
5.3 1.0
5.8 2.0
5.3 4.0
3.0 2.5

For each boundary variable, the boundary variable values for all standard faces are written. In the
example presented herein, the first boundary variable value is written for the boundary of the type
bottom, since the boundary was written first in the Boundary Types section. The first boundary vari-
able value for the boundary of the type top follows variable value for the boundary of the type bot-
tom. The boundary variable values for the boundary of the type wall are skipped, since the surface
results flag for the wall boundary type was 0 (false) in the Boundary Types section. All of the data
for the first boundary variable (at standard faces) is output before any of the data for the second vari-
able. After that, the data for the third variable is written. Finally, the data for the fourth variable is writ-
ten. The total number of real numbers in the section should match the number of boundary variables
times the number of standard boundary faces (quadrilaterals and triangles) that belong to a boundary
of a particular type times the number of boundary types that have surface results flag 1 (true).

Next, the section that contains boundary variable data for arbitrary polygon boundary faces is written.
This section should always appear after the section that contains boundary variable data for the stan-
dard boundary faces (if faces of both standard and arbitrary polygon boundary faces are present in the
dataset). Remember that the Boundary Table above has a surface results flag indicating which bound-
ary types have face data (surface results). The data should be written in the same order as the faces
in the Arbitrary Polygon Boundary Face sections, skipping over faces whose boundary type has a sur-
face results flag of zero (false). For each variable, you should write one number per arbitrary polygon
boundary face.

 if (nbvars .gt. 0) then
 write(iunit) FV_ARB_POLY_BNDRY_VARS
 write(iunit) ((trim_cell_bvars(i,j),j=1,7),
 + (hang_cell_bvars(i,k),k=1,6),i=1,nbvars)
 endif

1009
1.0 1.1 1.2 1.3 1.4 1.5 1.6

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 465

Table of ContentsIndex

1.1 1.11 1.12 1.13 1.14 1.15
1.7 1.8 1.9 1.1 1.11 1.12 1.13
1.16 1.17 1.18 1.19 1.2 1.21
1.14 1.15 1.16 1.17 1.18 1.19 1.2
1.22 1.23 1.24 1.25 1.26 1.27
1.21 1.22 1.23 1.24 1.25 1.26 1.27
1.28 1.29 1.30 1.31 1.32 1.33

Closing of results file:

 close(iunit)

Combined (Grid & Results) Unformatted (FORTRAN 77) Format
Sample FORTRAN 77 code, called write_unformatted_uns.F, has been included in the subdi-
rectory /uns of the directory where FieldView is installed. This sample file provides a framework for
your own writer and includes tips for easier application. The sample file also contains a useful subrou-
tine ftn_encode_header. It will be necessary to refer to this file to correctly write out the element
section as described below. All parameter definitions (FV_MAGIC, FV_ELEMENTS, etc.) can be found
in the header file ftn_fv_reader_tags.h in the subdirectory /uns of the directory where Field-
View is installed.

The first section contains an open statement for the file:

 iunit = 16
 open (unit=iunit, file='four_hex.uns',
 + status='UNKNOWN', form='UNFORMATTED',
 + iostat=istat)
 if (istat .ne. 0) then
 print *,'Cannot open file'
 stop 1
 endif

The next section contains a bit pattern to identify the file to FieldView. The section must be as follows:

c Output the magic number.
 write(iunit) FV_MAGIC

66051

The next section contains a string as shown. Strings must be padded to 80 characters. This is accom-
plished by copying them into the 80-character string txt (in the sample code):

c Output file header
 txt = 'FieldView'

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 466

Table of ContentsIndex

 write(iunit) txt

FieldView

Next, the version numbers for the format must be written as shown:

c This version of the FieldView unstructured file is "3.0".
c This is written as two integers.
c File type code - new in version 2.7.
c Reserved field, always write a zero –
c new in version 2.6.
 write(iunit) 3, 0, FV_COMBINED_FILE, 0

3 0 3 0

Next is the solution time, TIME, and 3 constants, FSMACH, ALPHA and RE that may be used by the
"CFD Calculator". If your results are not transient, you should put a floating point zero for the time
value. Similarly, if you do not wish to use these constants, use zero for these values as well.

The solution time and the 3 constants are all floating point numbers.

c Output constants for time, fsmach, alpha, re
 write(iunit) 1., 0., 0., 0.

1. 0. 0. 0.

Next, the number of grids must be written. Separating your data into multiple grids is needed in order
to use FieldView region grouping capabilities. One or more grids may be associated with a region via
FieldView Region File (see Chapter 3 of the Reference Manual for more information on region files).
If regions are not to be used, writing multiple grids is still beneficial, as the Grid File will then be suit-
able for the Grid-Parallel FieldView Server Input options.

c Output the number of grids.
 ngrids=1
 write(iunit) ngrids

1

Each face of any element may have its own unique type for association with a boundary surface. The
next section contains the number of different boundary types (which in this case is equal to 5):

c Output the table of boundary types, starting
c with the number of types.
 write(iunit) 5

5

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 467

Table of ContentsIndex

The next section contains the name of each boundary type preceded by the two integer flags for Sur-
face Results and Clockness respectively. The clockness of surface normals is only used for calculat-
ing certain boundary surface integrals that involve surface normals. If the surface normals flag is 0,
these special integrals will not be available. There must be as many entries as were specified in the
previous section. Strings must be written as a record of 80 characters. The boundary type names
may contain blanks. Boundary type names should always start with a letter. Each boundary type
name should be different from all other boundary type names. The comparison of names is case-
insensitive.

Surface Results Flag = 1 implies face based results present
= 0 implies no face based results present

Clockness Flag = 1 implies consistent clockness
(for component integral results output)

= 0 implies no consistent clockness

c We insert a space between the flags and the type name,
c to make it easier to read the ASCII format unstructured file.
 txt = 'bottom'
 write(iunit) 1, 1, txt
 txt = 'top'
 write(iunit) 1, 1, txt
 txt = 'wall'
 write(iunit) 0, 0, txt
 txt = 'trimmed cell'
 write(iunit) 1, 1, txt
 txt = 'hanging node cell'
 write(iunit) 1, 1, txt

1 1 bottom
1 1 top
0 0 wall
1 1 trimmed cell
1 1 hanging node cell

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section contains the node information for the grid being written. First a header word
FV_NODES with a numeric field signifies the section number. Next, the number of nodes in this grid is
written.

c Output node definition section for this grid.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 468

Table of ContentsIndex

 write(iunit) FV_NODES, 31

1001 31

This is followed by all of X, all of Y, and all of Z coordinates for all nodes in this grid. Note that all X
coordinates are output first, then all Y and finally all Z, and that all coordinates are output in a single
unformatted write statement:

c Output node definition section for this grid.
 write(iunit)x, y, z

-1. -1. 1. 1. -1. -1. 1. 1. -1. -1. 1. 1. 2. 2. 3. 3. 2.5 3. 2. 3. 3. 2. 2.5
3. 3. 3. 2.5 2. 2. 2.0 2.5
-1. -1. -1. -1. 1. 1. 1. 1. 3. 3. 3. 3. 0. 0. 0. 0. 0. .5 1. 1. 1. 1. .5 2.
2. 1.5 2. 2. 2. 1.45 1.5
-1. 1. -1. 1. -1. 1. -1. 1. -1. 1. -1. 1. 1. 0. 0. .5 1. 1. 1. 1. 0. 0. .5
0. 1. 1. 1. 1. 0. 1. 1.

The Standard Boundary Face section(s) for standard 2D elements is (are) next, starting with a header
word FV_FACES. Next, you must specify the boundary type (based upon the table above), the num-
ber of faces of this type, and then the vertices of each face. In the example presented herein, for the
boundary types of bottom (1 face), top (1 face) and wall (8 faces), the Standard Boundary Face
sections are as follows:

c Output boundary faces of the 3 types.
 write(iunit) FV_FACES, 1, 1
 write(iunit) bot_faces
 write(iunit) FV_FACES, 2, 1
 write(iunit) top_faces
 write(iunit) FV_FACES, 3, 8
 write(iunit) wall_faces

1002 1 1
1 2 4 3
1002 2 1
9 10 12 11
1002 3 8
1 2 6 5
5 6 10 9
3 4 8 7
7 8 12 11
1 3 7 5
5 7 11 9
2 4 8 6
6 8 12 10

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 469

Table of ContentsIndex

where

1002 header signifying the start of the face section
1 specifies boundary type bottom, the first type in the table above
1 the number of separate faces that have this type
1 2 4 3 face node numbers
1002 header signifying the start of the face section
2 specifies boundary type top, the second type in the table above
1 the number of separate faces that have this type
9 10 12 11 face node numbers
1002 header signifying the start of the face section
3 specifies boundary type wall, the third type in the table above
8 the number of separate faces that have this type
1 2 6 5 (etc...) face node numbers

Note: If the face is triangular (only has 3 nodes), you must specify the fourth vertex as zero.

Caution: A single boundary type can be broken into several sections if you prefer. Also, boundary
face sections do not have to be in order. You may have a section of 10 faces of type 3, followed by a
section of 20 faces of type 2, followed by a section of 15 more faces of type 3. However, note that
breaking a boundary type into very many short sections is less efficient. The boundaries will require
more memory and be somewhat slower to calculate in FieldView. Also note that you cannot mix stan-
dard (triangular and quadrilateral) faces and arbitrary polygon boundary faces in the same section.

The Arbitrary Polygon Boundary Face section(s) is (are) next. The semantics are the same as for
standard boundary faces. If you are not specifying arbitrary polygon boundary faces, you can skip
specifying this section completely. There are one or more separate sections for each boundary face
type, as in the case for standard boundary faces. The node ordering for specifying faces should follow
the right-handed rule (see FieldView Compliance for Unstructured Data on page 420 for more
information). In other words, nodes should be given by walking around the perimeter of the face in a
counter-clockwise manner. Hanging nodes are not permitted on boundary faces. In the example pre-
sented herein (see code in /uns subdirectory of the directory where FieldView is installed), there are
two Arbitrary Polygon Boundary Face sections, one section for trimmed node cell, and another
one for hanging node cell (the cells are shown in the section on Arbitrary Polyhedron Cells on
page 417).

All Standard Boundary Face sections must be written before any Arbitrary Boundary Face sections.

Each Arbitrary Polygon Boundary Face section starts with a header word FV_ARB_POLY_FACES,
boundary face type and the number of faces for the section. Boundary face type for trimmed cell
is 4, and the number of faces of this type is 7.

 write(iunit) FV_ARB_POLY_FACES,4,7

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 470

Table of ContentsIndex

1007 4 7

Next, there is a loop over the faces of type trimmed cell to write cell nodes:

 write(iunit) 5, (trim_cell_face(i,1), i=1,5),
 + 3, (trim_cell_face(i,2), i=1,3),
 + 5, (trim_cell_face(i,3), i=1,5),
 + 5, (trim_cell_face(i,4), i=1,5),
 + 4, (trim_cell_face(i,5), i=1,4),
 + 4, (trim_cell_face(i,6), i=1,4),
 + 4, (trim_cell_face(i,7), i=1,4)

5 13 14 15 16 17
3 16 18 17
5 15 21 20 18 16
5 13 17 18 20 19
4 13 19 22 14
4 14 22 21 15
4 19 20 21 22

The boundary face type for hanging node cell is 5, and the number of faces of this type is 6.

 write(iunit) FV_ARB_POLY_FACES,5,6

1007 5 6

Next, there is a cycle over the faces of type hanging node cell to write cell nodes:

 write(iunit) 5, (hang_cell_face(i,1), i=1,5),
 + 5, (hang_cell_face(i,2), i=1,5),
 + 7, (hang_cell_face(i,3), i=1,7),
 + 4, (hang_cell_face(i,4), i=1,4),
 + 4, (hang_cell_face(i,5), i=1,4),
 + 5, (hang_cell_face(i,6), i=1,5)

5 20 21 24 25 26
5 24 29 28 27 25
7 20 26 25 27 28 30 19
4 20 19 22 21
4 21 22 29 24
5 22 19 30 28 29

The following sections are 3D element sections. There may be as many element sections as needed.
Each section may consist of as many elements as needed. There are two kinds of 3D element sec-
tions: Standard 3D Element section and Arbitrary Polyhedron section. Each Standard 3D Element

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 471

Table of ContentsIndex

section may contain a single element type or a mixture of standard element types (tetrahedron, hexa-
hedron, prism, pyramid). Standard Element sections may be written before, after, or in-between Arbi-
trary Polyhedron sections. For maximum efficiency, each Standard 3D Element section should contain
a significant percentage of the elements of the grid.

The next section is a Standard 3D Element section. It starts with the FV_ELEMENTS keyword and
includes the number of standard elements of each type (tetrahedron, hexahedron, prism, pyramid).

c This element section contains 2 hexes.
 write(iunit) FV_ELEMENTS, 0, 2, 0, 0

1003 0 2 0 0

where

1003 header signifying the start of the elements section
0 number of tetrahedrons
2 number of hexahedrons
0 number of prisms
0 number of pyramids

The standard elements within the Standard 3D Element section can be written in any order, without
regard to element type. For each element, a header for that element is written. The header is followed
by the node definition for the element. The proper header value is generated by a call to ftn_en-
code_header (found in the sample source write_unformatted_uns.F in the /uns directory
where FieldView is installed). This FORTRAN routine packs the information about the element type
and wall flags into a four byte word that is called the element header. The 3D element face wall flags
indicate whether a particular element face should be treated as a wall in streamline computations.
Note that the wall flag data contained in the header is only used during streamline calculation; the data
is not used as boundary types.

The 3D element types are: 1-tetrahedron, 2-hexahedron, 3-prism, 4-pyramid. See Stan-
dard 3D element types on page 415 for node numbering information.

The element header and node definition information must be written with a single unformatted write
statement for all of the elements belonging to a given section.

c The headers and node definitions of all the elements in the section.
c This must be written with a single unformatted write statement.
 write(iunit) (headers(i), (hexes(j,i),j=1,8), i=1,num_elems)

First element header – four byte word
1 2 3 4 5 6 7 8

Second element header – four byte word
5 6 7 8 9 10 11 12

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 472

Table of ContentsIndex

Important Note: The ordering of the nodes within an element is important. See Figure 150 in
this appendix for details.

The next section is for specifying Arbitrary Polyhedron Elements. This section is not required to be
present. If you are not specifying arbitrary polyhedron elements, you can skip this section altogether.
The section consists of one or more arbitrary polyhedron elements. The section starts with the key-
word FV_ARB_POLY_ELEMENTS.

The wall flag for arbitrary polyhedron elements has the same meaning as for standard elements (in
standard element headers), i.e. A_WALL or NOT_A_WALL (see ftn_fv_reader_tags.h file in /
uns subdirectory of the directory where FieldView is installed). The wall flag information is used in
streamline computations. The node ordering for specifying faces should be consistent; if one face is
clockwise, then all faces of the cell must be clockwise. Hanging nodes are associated with a face inte-
rior and should not be on an edge (hanging nodes on an edge should be specified as regular arbitrary
polygon boundary face nodes).

In the example presented herein (see code in /uns subdirectory of the directory where FieldView is
installed) there are two arbitrary polyhedron elements: a trimmed cell element and a hanging node
element (the cells are shown in Arbitrary Polyhedron Cells on page 417). The section starts with
the FV_ARB_POLY_ELEMENTS keyword and the number of elements.

 write(iunit) FV_ARB_POLY_ELEMENTS, 2

1008 2

After that, the number of faces, the number of nodes (including the center node if there is one), and the
center node number are written for the trimmed cell element. The center node number should be
specified as a negative number if there is not a center node.

Next, for each face of the trimmed cell element the following values are written: wall value, number of
vertices for the face, node numbers for vertices of the face. In this example, all faces for the element
are assumed to be walls. All faces for the element are assumed not to have hanging nodes on them.

After that, the number of faces, the number of provided nodes (no center node exists for the cell), and
a "-1" for the center node number are written for the hanging node element. A negative integer
number for the center node tells FieldView that there is no center node for this cell.

Next, the following data is written for each face of the trimmed cell element: wall value, number of ver-
tices for the face, node numbers for vertices of the face. All faces for the element are assumed to be
walls. All faces for the element except face 3 are assumed not to have hanging nodes at them. Face
3 has one hanging node. Node number for the hanging node is 31.

 write(iunit) 7, 11, 23,

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 473

Table of ContentsIndex

 + A_WALL, 5, (trim_cell_face(i,1), i=1,5), 0,
 + A_WALL, 3, (trim_cell_face(i,2), i=1,3), 0,
 + A_WALL, 5, (trim_cell_face(i,3), i=1,5), 0,
 + A_WALL, 5, (trim_cell_face(i,4), i=1,5), 0,
 + A_WALL, 4, (trim_cell_face(i,5), i=1,4), 0,
 + A_WALL, 4, (trim_cell_face(i,6), i=1,4), 0,
 + A_WALL, 4, (trim_cell_face(i,7), i=1,4), 0,
 + 6, 12, -1,
 + A_WALL, 5, (hang_cell_face(i,1), i=1,5), 0,
 + A_WALL, 5, (hang_cell_face(i,2), i=1,5), 0,
 + A_WALL, 7, (hang_cell_face(i,3), i=1,7), 1, 31,
 + A_WALL, 4, (hang_cell_face(i,4), i=1,4), 0,
 + A_WALL, 4, (hang_cell_face(i,5), i=1,4), 0,
 + A_WALL, 5, (hang_cell_face(i,6), i=1,5), 0

7 11 23
7 5 13 14 15 16 17 0
7 3 16 18 17 0
7 5 15 21 20 18 16 0
7 5 13 17 18 20 19 0
7 4 13 19 22 14 0
7 4 14 22 21 15 0
7 4 19 20 21 22 0
6 12 -1
7 5 20 21 24 25 26 0
7 5 24 29 28 27 25 0
7 7 20 26 25 27 28 30 19 1 31
7 4 20 19 22 21 0
7 4 21 22 29 24 0
7 5 22 19 30 28 29 0

Note: The arbitrary polyhedron element section(s) can appear before, after, or in-between
standard 3D element (tetrahedron, pyramid, prism, hexahedron) sections. There can be any
number of both arbitrary polyhedron element sections and standard 3D element sections for
any grid. The only requirement is to start each section of standard 3D elements with
FV_ELEMENTS keyword, and to start each section of arbitrary polyhedron elements with

FV_ARB_POLY_ELEMENTS keyword.

Next, the variable section is listed. This begins with a header, followed by the results of each variable.
Note that the results are in single precision. This section header is required even if the number of vari-
ables is zero. The variable data must be written with a single unformatted write statement for the
entire grid.

c Output the variable data for this grid.
c This must be a single unformatted write statement.
c The variables must be in the same order as the "Variable Names"

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 474

Table of ContentsIndex

 write(iunit) FV_VARIABLES
 if (nvars .gt. 0) then
 write(iunit) vars
 endif

1004
1.0 0.1 1.2 0.1
1.1 0.2 1.1 0.2
…
1.18 1.18 1.18 1.18
(124 real numbers - 4 variables for 31 nodes)

Note: One needs to write out all of the results, in node order, for variable 1 (in this case
pressure), then all of the results, in node order, for variable 2 (in this case u-velocity),
etc. All of the data for the first variable is output before any of the data for the second variable.
The total number of real numbers should match the number of nodes times the number of
variables.

Next, the section that contains boundary variable data for standard boundary faces (quadrilaterals and
triangles) is written. Remember that the Boundary Table above has a surface results flag indicating
which boundary types have face data (surface results). The data should be written in the same order
as the faces in the Boundary Faces sections, skipping over faces whose boundary type has a surface
results flag of zero (false). For each variable, you should write one number per boundary face. You
must write the section header even if the number of boundary variables is zero.

The boundary face data must be written with a single unformatted write statement for the entire grid.

 write(iunit) FV_BNDRY_VARS
 if (nbvars .gt. 0) then
c NOTE: If this grid has no faces with surface results, then
c do NOT write an empty record. For grids with no surface
c results, you should skip the following write statement.
 write(iunit) (bot_bvars(i),top_bvars(i),i=1,nbvars)
 endif

1006
5.4 1.0
5.9 2.0
5.4 4.0
3.0 2.5

For each boundary variable, the boundary variable values for all standard faces are written. In the
example presented herein, the first boundary variable value is written for the boundary of the type
bottom, since the boundary was written first in the Boundary Types section. The first boundary vari-
able value for the boundary of the type top follows variable value for the boundary of the type bot-
tom. The boundary variable values for the boundary of the type wall are skipped, since the surface

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 475

Table of ContentsIndex

results flag for the wall boundary type was 0 (false) in the Boundary Types section. All of the data
for the first boundary variable (at standard faces) is output before any of the data for the second vari-
able. After that, the data for the third variable is written. Finally, the data for the fourth variable is writ-
ten. The total number of real numbers in the section should match the number of boundary variables
times the number of standard boundary faces (quadrilaterals and triangles) that belong to a boundary
of a particular type times the number of boundary types that have surface results flag 1 (true).

Note: There is no header word '1005'.

Next, the section that contains boundary variable data for arbitrary polygon boundary faces is written.
This section should always appear after the section that contains boundary variable data for the stan-
dard boundary faces (if faces of both standard and arbitrary polygon boundary faces are present in the
dataset). Remember that the Boundary Table above has a surface results flag indicating which bound-
ary types have face data (surface results). The data should be written in the same order as the faces
in the Arbitrary Polygon Boundary Face sections, skipping over faces whose boundary type has a sur-
face results flag of zero (false). For each variable, you should write one number per arbitrary polygon
boundary face.

 write(iunit) FV_BNDRY_VARS
 if (nbvars .gt. 0) then
 write(iunit) (bot_bvars(i),top_bvars(i),i=1,nbvars)
 endif

1006
5.5 1.0
5.10 2.0
5.5 4.0
3.0 2.5

For each boundary variable, the boundary variable values for all standard faces are written. In the
example presented herein, the first boundary variable value is written for the boundary of the type
bottom, since the boundary was written first in the Boundary Types section. The first boundary vari-
able value for the boundary of the type top follows variable value for the boundary of the type bot-
tom. The boundary variable values for the boundary of the type wall are skipped, since the surface
results flag for the wall boundary type was 0 (false) in the Boundary Types section. All of the data
for the first boundary variable (at standard faces) is output before any of the data for the second vari-
able. After that, the data for the third variable is written. Finally, the data for the fourth variable is writ-
ten. The total number of real numbers in the section should match the number of boundary variables
times the number of standard boundary faces (quadrilaterals and triangles) that belong to a boundary
of a particular type times the number of boundary types that have surface results flag 1 (true).

Next, the section that contains boundary variable data for arbitrary polygon boundary faces is written.
This section should always appear after the section that contains boundary variable data for the stan-
dard boundary faces (if faces of both standard and arbitrary polygon boundary faces are present in the
dataset). Remember that the Boundary Table above has a surface results flag indicating which bound-
ary types have face data (surface results). The data should be written in the same order as the faces

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 476

Table of ContentsIndex

in the Arbitrary Polygon Boundary Face sections, skipping over faces whose boundary type has a sur-
face results flag of zero (false). For each variable, you should write one number per arbitrary polygon
boundary face.

 if (nbvars .gt. 0) then
 write(iunit) FV_ARB_POLY_BNDRY_VARS
 write(iunit) ((trim_cell_bvars(i,j),j=1,7),
 + (hang_cell_bvars(i,k),k=1,6),i=1,nbvars)
 endif

1009
1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.1 1.11 1.12 1.13 1.14 1.15
1.7 1.8 1.9 1.1 1.11 1.12 1.13
1.16 1.17 1.18 1.19 1.2 1.21
1.14 1.15 1.16 1.17 1.18 1.19 1.2
1.22 1.23 1.24 1.25 1.26 1.27
1.21 1.22 1.23 1.24 1.25 1.26 1.27
1.28 1.29 1.30 1.31 1.32 1.33

Closing of the file:

 close(iunit)

ASCII Format
General Remarks on ASCII Format
The ASCII format and the Binary/Unformatted formats are not the same. Specifically, the flagging of
faces as walls is done in the Boundary Table section in the ASCII format, where each boundary type is
reported as a wall or not. In the Binary/Unformatted formats, each face of a 3D element is assigned a
wall flag in the Elements section. The Binary/Unformatted format is thus more flexible, but requires a
little more bookkeeping. The ASCII version also differs in the way that the XYZ values of the nodes
are output, how the Boundary Faces are output, etc.

Comments can be used in the ASCII format (but not in binary and unformatted format). Any line start-
ing with an exclamation point (!) will be considered a comment and ignored. All keywords in the ASCII
file are case-insensitive. There are no explicit end of file characters.

Split ASCII Format
General Remarks on Split ASCII Format
This section will describe the Split ASCII format in detail. In the Split ASCII format, grid data and
results data are stored separately in two files. See the sample code write_split_ascii_uns.f
in the /uns sub-directory of the FieldView installation. This sample code is used in the following
description.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 477

Table of ContentsIndex

Grid File in Split ASCII Format
The first section contains an open statement for the grid file:

 iunit = 16
 open (unit=iunit,
 + file='four_hex_ascii_grids.uns',
 + status='UNKNOWN', form='FORMATTED',
 + iostat=istat)
 if (istat .ne. 0) then
 print *,'Cannot open file'
 stop 1
 endif

The first line of the file must contain the keyword FieldView_Grids followed by two integers as
shown. No symbols or spaces are allowed before the keyword FieldView_Grids.

 write(iunit, 1000)
 + 'FieldView_Grids 3 0'
 1000 format(13a)

FieldView_Grids 3 0

Note: Comments can be used in the ASCII format. Any line starting with an exclamation point
(!) will be considered a comment and ignored. All keywords in the ASCII file are case-insen-
sitive.

Next, the keyword Grids, followed by the number of grids in the file must be displayed.

 ngrids = 1
 write(iunit, *) 'Grids', ngrids

Grids 1

Separating your data into multiple grids is needed in order to use FieldView region grouping capabili-
ties. One or more grids may be associated with a region via FieldView Region File (see Chapter 3 of
the Reference Manual for more information on region files). If regions are not to be used, writing mul-
tiple grids is still beneficial, as the Grid File will then be suitable for the Grid-Parallel FieldView Server
Input options..

Each boundary face (2D element) must have an integer number, the boundary face type, assigned to
it. The integer numbers may range from one to the number of different boundary types (which in the
sample source file is equal to 5). This is used to associate the face with a boundary. The next few
lines specify the wall and face data results flags and name of each boundary type. A space (' ') is
written before each boundary name to separate it from the integer flags. The boundary type names
can be up to 80 characters, beginning with a letter. They can contain blanks. Each boundary type

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 478

Table of ContentsIndex

name must be different from all other boundary type names. The comparison of names is case-insen-
sitive.

The section contains the table of boundary types, starting with the key phrase Boundary Table and
the number of different boundary types. Each boundary type name in the table is preceded by 3 inte-
ger flags. Note that this differs from the binary/unformatted specification which has 2 flags.

The first flag indicates whether this boundary type is a wall. A flag value of 1 indicates a wall, and a
value of 0 indicates a non-wall. Walls are significant for streamline calculation.

The second flag indicates whether the boundary type has face data (surface results). A value of 1
means face data will be present for this boundary type (if any boundary variables are specified in the
Boundary Variable Names section below). A value of 0 means no face data will be present.

The third flag indicates whether boundary faces of this type have consistent clockness for the purpose
of calculating a surface normal. A value of 1 means that all faces of this type are written following the
“right hand rule” for clockness. In other words, if the face vertices are written in the order that implies
walking around the perimeter of the face in counter-clockwise direction (see Figure 154) then the nor-
mal to the face is pointing towards you (not away from you). A value of 0 means that the faces do not
have any consistent clockness. The clockness of surface normals is only used for calculating certain
boundary surface integrals that involve surface normals. If the surface normals flag is 0, these special
integrals will not be available.

 write(iunit, *) 'Boundary Table', 3
 write(iunit, *) 0, 1, 1, ' ', 'bottom'
 write(iunit, *) 0, 1, 1, ' ', 'top'
 write(iunit, *) 1, 0, 0, ' ', 'wall'
 write(iunit, *) 1, 1, 1, ' ', 'trimmed cell'
 write(iunit, *) 1, 1, 1, ' ', 'hanging node cell'

Boundary Table 3
0 1 1 bottom
0 1 1 top
1 0 0 wall
1 1 1 trimmed cell
1 1 1 hanging node cell

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section of the file defines the vertices of the grid. It begins with the keyword Nodes, followed
by the number of nodes in the grid. Subsequent lines contain the X, Y and Z coordinates of each
vertex. The ordering of the vertices is important since a node number will be calculated for each node

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 479

Table of ContentsIndex

corresponding to the order of the vertex in the list. This node number (which is not entered in this sec-
tion, and which starts with 1) is used later to define the elements.

 nnodes = 31
 write(iunit, *) 'Nodes', nnodes
c Output the X, Y, Z coordinates of successive nodes.
c Note that this differs from the binary/unformatted specification.
 do 200 i = 1, nnodes
 write(iunit, *) x(i), y(i), z(i)
 200 continue

-1. -1. -1.
-1. -1. 1.
1. -1. -1.
1. -1. 1.
-1. 1. -1.
-1. 1. 1.
1. 1. -1.
1. 1. 1.
-1. 3. -1.
-1. 3. 1.
1. 3. -1.
1. 3. 1.
2. 0. 1.
2. 0. 0.
3. 0. 0.
3. 0. .5
2.5 0. 1.
3. .5 1.
2. 1. 1.
3. 1. 1.
3. 1. 0.
2. 1. 0.
2.5 .5 .5
3. 2. 0.
3. 2. 1.
3. 1.5 1.
2.5 2. 1.
2. 2. 1.
2. 2. 0.
2.0 1.45 1.
2.5 1.5 1.

Next, the boundary faces are defined. Each face is preceded by its type number (an index in the the
Boundary Table described above) and the number of face vertices. (Note that this differs from the

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 480

Table of ContentsIndex

Binary/Unformatted specification.) The number of face vertices may be 3 or 4 for Standard Faces.
The number of face vertices may be from 5 to 256 for Arbitrary Polygon Boundary Faces.

You should have at least one face (either Standard Boundary Face or Arbitrary Polygon Boundary
Face) for each non-empty boundary type listed in the boundary table above.

Caution: A single boundary type can be broken into several sections if you prefer. Also, boundary
face sections do not have to be in order. You may have a section of 10 faces of type 3, followed by a
section of 20 faces of type 2, followed by a section of 15 more faces of type 3. Also note that it is
allowed to mix standard (triangular and quadrilateral) faces and arbitrary polygon boundary faces.
Hanging nodes are not permitted on boundary faces.

The node ordering for specifying faces should follow the right-handed rule (see FieldView Compli-
ance for Unstructured Data on page 420). In other words, nodes should be given by walking around
the perimeter of the face in a counter-clockwise manner. Hanging nodes are not permitted on bound-
ary faces. In the example presented herein (see code in /uns subdirectory of the directory where
FieldView is installed), there are 10 Standard Faces that belong to bottom, top and wall bound-
ary types, 9 Standard Faces that belong to trimmed node cell and hanging node cell boundary types,
and 4 Arbitrary Polygon Boundary Faces that belong to trimmed node cell and hanging node cell
boundary types (the cells are shown in the Arbitrary Polyhedron Cells on page 417). The first
boundary face type is bottom, with a rectangular face (4 nodes) consisting of nodes 1, 2, 4 and 3.
The second boundary face type is top, with a rectangular face consisting of nodes 9, 10, 12 and
11. Eight rectangular faces type wall are written after that. Nine Standard Faces that belong to
trimmed node cell and hanging node cell boundary types are written after that. Four Arbitrary Polygon
Boundary Faces that belong to trimmed node cell and hanging node cell boundary types are written
after all Standard Boundary Faces are written.

If a face is not a boundary, it is not necessary to define it in this section. The section must start with the
keywords Boundary Faces, followed by the number of faces that will be defined, as shown below.

 nbfaces = 10 + 13
 write(iunit, *) 'Boundary Faces', nbfaces

Boundary Faces 23

 write(iunit, *) 1, 4, (bot_faces(i,1), i=1,4)

1 4 1 2 4 3

 write(iunit, *) 2, 4, (top_faces(i,1), i=1,4)

2 4 9 10 12 11

 do 300 j = 1, 8
 write(iunit, *) 3, 4, (wall_faces(i,j), i=1,4)
 300 continue

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 481

Table of ContentsIndex

3 4 1 2 6 5
3 4 5 6 10 9
3 4 3 4 8 7
3 4 7 8 12 11
3 4 1 3 7 5
3 4 5 7 11 9
3 4 2 4 8 6
3 4 6 8 12 10

c First, write the triangular and quadrilateral (i.e., 3 or 4 node faces)
c that are a part of the trimmed and hanging node cell.
 write(iunit, *) 4, 3, (trim_cell_face(i,2), i=1,3)
 write(iunit, *) 4, 4, (trim_cell_face(i,5), i=1,4)
 write(iunit, *) 4, 4, (trim_cell_face(i,6), i=1,4)
 write(iunit, *) 4, 4, (trim_cell_face(i,7), i=1,4)
 write(iunit, *) 5, 4, (hang_cell_face(i,4), i=1,4)
 write(iunit, *) 5, 4, (hang_cell_face(i,5), i=1,4)

4 3 16 18 17
4 4 13 19 22 14
4 4 14 22 21 15
4 4 19 20 21 22
5 4 20 19 22 21
5 4 21 22 29 24

 write(iunit, *) 4, 5, (trim_cell_face(i,1), i=1,5)
 write(iunit, *) 4, 5, (trim_cell_face(i,3), i=1,5)
 write(iunit, *) 4, 5, (trim_cell_face(i,4), i=1,5)

4 5 13 14 15 16 17
4 5 15 21 20 18 16
4 5 13 17 18 20 19

 write(iunit, *) 5, 5, (hang_cell_face(i,1), i=1,5)
 write(iunit, *) 5, 5, (hang_cell_face(i,2), i=1,5)
 write(iunit, *) 5, 7, (hang_cell_face(i,3), i=1,7)
 write(iunit, *) 5, 5, (hang_cell_face(i,6), i=1,5)

5 5 20 21 24 25 26
5 5 24 29 28 27 25
5 7 20 26 25 27 28 30 19
5 5 22 19 30 28 29

3D elements (cells) are defined in the next section. The section must begin with the keyword Ele-
ments.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 482

Table of ContentsIndex

 write(iunit, *) 'Elements'

Elements

The elements are described as follows. Each element will get a type and a subtype (currently always
set to one). The Standard 3D element types are: 1-tetrahedron, 2-hexahedron, 3-prism, 4-
pyramid. Type 5 is assigned to Arbitrary Polyhedron 3D elements.

Standard 3D elements require between 4 and 8 node numbers (depending on the element type) to
define the element. The ordering of the nodes is important. See Standard 3D element types on
page 415 for node numbering information. The node numbers follow the element type.

The Arbitrary Polyhedron 3D elements are described as follows. First, the element type, 5, is written.
Next, the element subtype, 1 is written (at present, subtype is 1 for all elements; it is a reserved
field). After that, the number of faces, the number of nodes including the center node, and the center
node number are written. A negative integer number for the center node tells FieldView there is no
center node. Next, each face of the Arbitrary Polyhedron 3D element is described. For each face, the
number of face vertices, the vertex numbers, the number of hanging nodes and the hanging node
numbers are written.

In the example presented herein (see code in /uns subdirectory of the directory where FieldView is
installed) there are two hexahedral 3D elements (cells) and two arbitrary polyhedron elements: a
trimmed cell element and a hanging node element (the cells are shown in Arbitrary Polyhedron Cells
on page 417).

Two hexahedral cells are written as follows:
 write(iunit, *) 2, 1
 write(iunit, *) (hexes(i,1),i=1,8)
 write(iunit, *) 2, 1
 write(iunit, *) (hexes(i,2),i=1,8)

2 1
1 2 3 4 5 6 7 8
2 1
5 6 7 8 9 10 11 12

The first element is a hexahedron, consisting of nodes 1 through 8. The second element is also a
hexahedron, consisting of nodes 5 through 12.

Next, for the trimmed cell element we have:

 write(iunit, *) 5, 1
 write(iunit, *) 7, 11, 23
 write(iunit, *) 5, (trim_cell_face(i,1), i=1,5), 0
 write(iunit, *) 3, (trim_cell_face(i,2), i=1,3), 0
 write(iunit, *) 5, (trim_cell_face(i,3), i=1,5), 0

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 483

Table of ContentsIndex

 write(iunit, *) 5, (trim_cell_face(i,4), i=1,5), 0
 write(iunit, *) 4, (trim_cell_face(i,5), i=1,4), 0
 write(iunit, *) 4, (trim_cell_face(i,6), i=1,4), 0
 write(iunit, *) 4, (trim_cell_face(i,7), i=1,4), 0

5 1
7 11 23
5 13 14 15 16 17 0
3 16 18 17 0
5 15 21 20 18 16 0
5 13 17 18 20 19 0
4 13 19 22 14 0
4 14 22 21 15 0
4 19 20 21 22 0

All faces for the element are assumed not to have hanging nodes at them.

For the hanging node element we have:

 write(iunit, *) 5, 1
 write(iunit, *) 6, 12, -1
 write(iunit, *) 5, (hang_cell_face(i,1), i=1,5), 0
 write(iunit, *) 5, (hang_cell_face(i,2), i=1,5), 0
 write(iunit, *) 7, (hang_cell_face(i,3), i=1,7), 1, 31
 write(iunit, *) 4, (hang_cell_face(i,4), i=1,4), 0
 write(iunit, *) 4, (hang_cell_face(i,5), i=1,4), 0
 write(iunit, *) 5, (hang_cell_face(i,6), i=1,5), 0

5 1
6 12 -1
5 20 21 24 25 26 0
5 24 29 28 27 25 0
7 20 26 25 27 28 30 19 1 31
4 20 19 22 21 0
4 21 22 29 24 0
5 22 19 30 28 29 0

All faces for the element except face 3 are assumed not to have hanging nodes at them. Face 3
has one hanging node. Node number for the hanging node is 31.

Note: Keeping arbitrary polyhedron elements together is recommended but not required. The
arbitrary polyhedron elements can appear before, after, or in-between standard 3D elements
(tetrahedron, pyramid, prism, hexahedron) sections.

Closing of grid file:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 484

Table of ContentsIndex

 close(iunit)

The following is a sample grid file in ASCII format and a description of a simple 4 hex element mesh.
Note that it is not required that values, such as the Nodes keyword and 18, appear all on one line.
The format shown below is valid, but less compact. It has been shown this way for ease of readability.

FieldView_Grids 3 0 Header Line

Grids
1 Number of grids

Boundary Table
3 Number of boundaries
0 0 1 inlet Boundary 1 is of type 0 (does not block flow),

no face data present and it has the correct clockness.
It is called "inlet".

0 0 0 outlet Boundary 2 is of type 0 (does not block flow),
no face data present and it has the correct clockness.
It is called "outlet".

1 1 1 wall boundary Boundary 3 is of type 1 (a wall, does block flow),
face data is present and it has the correct clockness.
It is called "wall boundary".

Nodes
18 Number of nodes
0.0 0.0 0.0 X Y Z Coordinates of node 1
0.5 0.0 0.0 X Y Z Coordinates of node 2
1.0 0.0 0.0 X Y Z Coordinates of node 3
0.0 0.5 0.0
0.5 0.5 0.0
1.0 0.5 0.0
0.0 1.0 0.0
0.5 1.0 0.0
1.0 1.0 0.0
0.0 0.0 1.0
0.5 0.0 1.0
1.0 0.0 1.0
0.0 0.5 1.0
0.5 0.5 1.0
1.0 0.5 1.0
0.0 1.0 1.0
0.5 1.0 1.0
1.0 1.0 1.0

Boundary Faces

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 485

Table of ContentsIndex

3 Number of boundary faces
1 4 1 4 5 2 Definition of boundary face (boundary type 1,

contains 4 nodes, node numbers 1, 4, 5, 2)
2 4 14 17 18 15
3 4 13 16 17 14

Elements
2 1 1 2 10 11 4 5 13 14 Element definition (hex element (type = 2),

subtype 1, nodes 1, 2, 10, 11, 4, 5, 13, 14)
2 1 2 3 11 12 5 6 14 15
2 1 4 5 13 14 7 8 16 17
2 1 5 6 14 15 8 9 17 18

The file shown above is used to define the dataset shown in Figure 155.

Results File in Split ASCII Format
The first section contains an open statement for results file:

 iunit = 16
 open (unit=iunit,
 + file='four_hex_ascii_results.uns',
 + status='UNKNOWN', form='FORMATTED',
 + iostat=istat)
 if (istat .ne. 0) then
 print *,'Cannot open file'
 stop 1
 endif

The first line of the file must contain the word FieldView_Results followed by two integers as
shown.

 write(iunit, 1000)
 + 'FieldView_Results 3 0'
 1000 format(13a)

FieldView_Results 3 0

Note: Comments can be used in the ASCII format. Any line starting with an exclamation point
(!) will be considered a comment and ignored. All keywords in the ASCII file are case-insen-
sitive.

The next section specifies the solution time (TIME) and 3 constants (FSMACH, ALPHA, and RE) that
may be used by the "CFD Calculator". If your results are not transient, you should put a floating point

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 486

Table of ContentsIndex

zero for the time value. Similarly, if you do not wish to use these constants, use a floating point zero for
these values as well. This section is preceded by the keyword Constants.

 write(iunit, *) 'Constants'
 write(iunit, *) 1., 0., 0., 0.

Constants
1.0 0.0 0.0 0.0

Next, the keyword Grids, followed by the number of grids in the file must be displayed.

 ngrids = 1
 write(iunit, *) 'Grids', ngrids

Grids 1

Separating your data into multiple grids is needed in order to use FieldView region grouping capabili-
ties. One or more grids may be associated with a region via FieldView Region File (see Chapter 3 of
the Reference Manual for more information on region files). If regions are not to be used, writing mul-
tiple grids is still beneficial, as the Grid File will then be suitable for the Grid-Parallel FieldView Server
Input options.

The next section contains the number of volume (nodal) variables in the file, followed by the names of
the variables. When listing the names of the variables, a vector is indicated by following the first com-
ponent of the vector with a semicolon and the name of the vector. This will indicate that this variable
and the next two listed are the three components of the vector (note that a vector is counted as three
variables). The variable names can be up to 80 characters in length and may contain blanks.

Note: The number of variables can be zero, meaning the file contains no information on vol-
ume variables. If this is the case, the number of variables, "0", still has to be present in the
file.

The section starts with the keyword Variable Names.

 nvars = 4
 write(iunit, *) 'Variable Names', nvars
 write(iunit, *) 'pressure'
 write(iunit, *) 'uvel; velocity'
 write(iunit, *) 'vvel'
 write(iunit, *) 'wvel'

Variable Names 4
pressure
uvel; velocity
vvel

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 487

Table of ContentsIndex

wvel

The next section contains the number and names of boundary variables in the file. Boundary variables
are associated with boundary faces, rather than with grid nodes. FieldView will automatically append
[BNDRY] to each name so boundary variables can be easily distinguished from ordinary (grid node)
variables. The number of boundary variables can be different from the number of ordinary variables.
The number of boundary variables can also be zero. The boundary variable names can be up to 80
characters in length and may contain blanks.

The section should start with the keyword Boundary Variable Names.

 nbvars = 4
 write(iunit, *) 'Boundary Variable Names', nbvars
 write(iunit, *) 'temperature'
 write(iunit, *) 'uvel; velocity'
 write(iunit, *) 'vvel'
 write(iunit, *) 'wvel'

Boundary Variable Names 4
temperature
uvel; velocity
vvel
wvel

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section contains some node information for the grid. First the header word Nodes
is written. Next, the number of nodes in this grid is written. It should be the same as the number of
nodes in corresponding grid file.

 nnodes = 31
 write(iunit, *) 'Nodes', nnodes

Nodes 31

Next, the results variables for each node are listed in the same order as the nodes were defined. The
variables must be in the same order as in the Variable Names section. One needs to write out all of
the results, in node order, for variable 1 (in this case pressure), then all of the results, in node
order, for variable 2 (in this case u-velocity), etc. All of the data for the first variable is output
before any of the data for the second variable. The total number of real numbers should match the
number of nodes times the number of variables.

The section must begin with the keyword Variables. You should skip this section if the number of
variables is zero.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 488

Table of ContentsIndex

 if (nvars .gt. 0) then
 write(iunit, *) 'Variables'
 do 500 j = 1, nvars
 do 600 i = 1, nnodes
 write(iunit, *) vars(i,j)
 600 continue
 500 continue
 endif

Variables
1.0 0.1 1.2 0.1
1.1 0.2 1.1 0.2
…
1.18 1.18 1.18 1.18
(124 real numbers - 4 variables for 31 nodes)

Next, output the face data (boundary variable data) for this grid. Note that all of the data for the first
variable is output before any of the data for the second variable. Remember that the Boundary Table
above has a surface results flag indicating which boundary types have surface results. The data
should be written in the same order as the faces in the Boundary Faces section, skipping over faces
whose boundary type has a surface results flag of zero (false). For each variable, you should write
one number per boundary face. The section must begin with the keyword Boundary Variables.
You should skip this section if the number of boundary variables is zero.

 if (nbvars .gt. 0) then
 write(iunit, *) 'Boundary Variables'
 do 700 j = 1, nbvars
c The data for the bottom face is written first for each variable, because
c the bottom face was written first in the "Boundary Faces" section.
c Write data for variable#j for the "bottom" face:
 write(iunit, *) bot_bvars(j)
c Write data for variable#j for the "top" face:
 write(iunit, *) top_bvars(j)
c Skip the "wall" faces, because the surface results flag for the wall
c boundary type was 0 (false) in the Boundary Table section.
c Arbitrary Polyhedron boundary variables:
 write(iunit, *) (trim_cell_bvars(j,i), i=1,7)
 write(iunit, *) (hang_cell_bvars(j,i), i=1,6)
 700 continue
 endif

Boundary Variables
1.0
1.0
1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.1 1.11 1.12 1.13 1.14 1.15

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 489

Table of ContentsIndex

4.5
2.0
1.7 1.8 1.9 1.1 1.11 1.12 1.13
1.16 1.17 1.18 1.19 1.2 1.21
3.0
4.0
1.14 1.15 1.16 1.17 1.18 1.19 1.2
1.22 1.23 1.24 1.25 1.26 1.27
3.0
2.5
1.21 1.22 1.23 1.24 1.25 1.26 1.27
1.28 1.29 1.30 1.31 1.32 1.33

Closing of results file:

 close(iunit)

Important Notes:
1. All of the keywords shown above must be entered exactly as they appear in this document. They

are, however, case-insensitive.
2. Except where explicitly stated, every section described above must appear in the data file, even if

the capabilities provided by the section are not used. For example, if no Boundary Surfaces are to
be defined, both the Boundary Table and the Boundary Faces sections must still appear, with the
number of types and faces set to zero.

The following is a sample results file in ASCII format and a description of a simple 4 hex element
mesh. Note that it is not required that values, such as constants, appear all on one line. The format
shown below is valid, but less compact. It has been shown this way for ease of readability.

FieldView_Grids 3 0 Header Line

Constants
0.0 Floating point number for TIME
0.2 Floating point number for FSMACH
15.0 Floating point number for ALPHA
1.6e06 Floating point number for RE

Grids
1 Number of grids

Variable Names
2 Number of variables
pressure Names of variables
temperature

Boundary Variable Names

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 490

Table of ContentsIndex

2 Number of variables
pressure Names of variables
temperature

Nodes
18 Number of nodes

Variables
0.0 0.1 0.2 0.1 0.2 0.3 Pressure values (in node order)
0.2 0.3 0.4 1.0 1.1 1.2
1.1 1.2 1.3 1.2 1.3 1.4
100 200 300 100 200 300 Temperature values (in node order)
200 300 200 200 350 400
355 405 500 100 200 300

Boundary Variables
0.0157 323 Only "wall" has face data and "wall" has only one

face. There is therefore only a single Boundary Variable
value for this face for each of the two normal variables,
pressure and temperature.

The file shown above is used to define the dataset shown in Figure 155.

Combined (Grid & Results) ASCII Format
This section will describe the Combined (Grid & Results) ASCII format in detail. See the sample code
write_ascii_uns.f in the /uns subdirectory of the directory where FieldView is installed. This
sample code is used in the following description.

The first section contains an open statement for the grid file:

 iunit = 16
 open (unit=iunit,
 + file='four_hex_ascii_grids.uns',
 + status='UNKNOWN', form='FORMATTED',
 + iostat=istat)
 if (istat .ne. 0) then
 print *,'Cannot open file'
 stop 1
 endif

The first line of the file must contain the keyword FIELDVIEW followed by two integers as shown. No
symbols or spaces are allowed before the keyword FIELDVIEW.

 write(iunit, 1000)
 + 'FIELDVIEW 3 0'

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 491

Table of ContentsIndex

 1000 format(13a)

FIELDVIEW 3 0

Note: Comments can be used in the ASCII format. Any line starting with an exclamation point
(!) will be considered a comment and ignored. All keywords in the ASCII file are case-insen-
sitive.

The next section specifies the solution time (TIME) and 3 constants (FSMACH, ALPHA, and RE) that
may be used by the "CFD Calculator". If your results are not transient, you should put a floating point
zero for the time value. Similarly, if you do not wish to use these constants, use a floating point zero for
these values as well. This section is preceded by the keyword Constants.

 write(iunit, *) 'Constants'
 write(iunit, *) 1., 0., 0., 0.

Constants
1.0 0.0 0.0 0.0

Next, the keyword Grids, followed by the number of grids in the file must be displayed.

 ngrids = 1
 write(iunit, *) 'Grids', ngrids

Grids 1

Separating your data into multiple grids is needed in order to use FieldView region grouping capabili-
ties. One or more grids may be associated with a region via FieldView Region File (see Chapter 3 of
the Reference Manual for more information on region files). If regions are not to be used, writing mul-
tiple grids is still beneficial, as the Grid File will then be suitable for the Grid-Parallel FieldView Server
Input options.

Each boundary face (2D element) must have an integer number, the boundary face type, assigned to
it. The integer numbers may range from one to the number of different boundary types (which in the
sample source file is equal to 5). This is used to associate the face with a boundary. The next few
lines specify the wall and face data results flags and name of each boundary type. A space (' ') is
written before each boundary name to separate it from the integer flags. The boundary type names
can be up to 80 characters, beginning with a letter. They can contain blanks. Each boundary type
name must be different from all other boundary type names. The comparison of names is case-insen-
sitive.

The section contains the table of boundary types, starting with the key phrase Boundary Table and
the number of different boundary types. Each boundary type name in the table is preceded by 3 inte-
ger flags. Note that this differs from the binary/unformatted specification which has 2 flags.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 492

Table of ContentsIndex

The first flag indicates whether this boundary type is a wall. A flag value of 1 indicates a wall, and a
value of 0 indicates a non-wall. Walls are significant for streamline calculation.

The second flag indicates whether the boundary type has face data (surface results). A value of 1
means face data will be present for this boundary type (if any boundary variables are specified in the
Boundary Variable Names section below). A value of 0 means no face data will be present.

The third flag indicates whether boundary faces of this type have consistent clockness for the purpose
of calculating a surface normal. A value of 1 means that all faces of this type are written following the
“right hand rule” for clockness. In other words, if the face vertices are written in the order that implies
walking around the perimeter of the face in counter-clockwise direction (see Figure 154) then the nor-
mal to the face is pointing towards you (not away from you). A value of 0 means that the faces do not
have any consistent clockness. The clockness of surface normals is only used for calculating certain
boundary surface integrals that involve surface normals. If the surface normals flag is 0, these special
integrals will not be available.

 write(iunit, *) 'Boundary Table', 3
 write(iunit, *) 0, 1, 1, ' ', 'bottom'
 write(iunit, *) 0, 1, 1, ' ', 'top'
 write(iunit, *) 1, 0, 0, ' ', 'wall'
 write(iunit, *) 1, 1, 1, ' ', 'trimmed cell'
 write(iunit, *) 1, 1, 1, ' ', 'hanging node cell'

Boundary Table 3
0 1 1 bottom
0 1 1 top
1 0 0 wall
1 1 1 trimmed cell
1 1 1 hanging node cell

Note: If you specified more than one grid, the following sections of this file must be repeated
for each grid.

The next section of the file defines the vertices of the grid. It begins with the keyword Nodes, followed
by the number of nodes in the grid. Subsequent lines contain the X, Y and Z coordinates of each
vertex. The ordering of the vertices is important since a node number will be calculated for each node
corresponding to the order of the vertex in the list. This node number (which is not entered in this sec-
tion, and which starts with 1) is used later to define the elements.

 nnodes = 31
 write(iunit, *) 'Nodes', nnodes
c Output the X, Y, Z coordinates of successive nodes.
c Note that this differs from the binary/unformatted specification.
 do 200 i = 1, nnodes

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 493

Table of ContentsIndex

 write(iunit, *) x(i), y(i), z(i)
 200 continue

-1. -1. -1.
-1. -1. 1.
1. -1. -1.
1. -1. 1.
-1. 1. -1.
-1. 1. 1.
1. 1. -1.
1. 1. 1.
-1. 3. -1.
-1. 3. 1.
1. 3. -1.
1. 3. 1.
2. 0. 1.
2. 0. 0.
3. 0. 0.
3. 0. .5
2.5 0. 1.
3. .5 1.
2. 1. 1.
3. 1. 1.
3. 1. 0.
2. 1. 0.
2.5 .5 .5
3. 2. 0.
3. 2. 1.
3. 1.5 1.
2.5 2. 1.
2. 2. 1.
2. 2. 0.
2.0 1.45 1.
2.5 1.5 1.

Next, the boundary faces are defined. Each face is preceded by its type number (an index in the the
Boundary Table described above) and the number of face vertices. (Note that this differs from the
Binary/Unformatted specification.) The number of face vertices may be 3 or 4 for Standard Faces.
The number of face vertices may be from 5 to 256 for Arbitrary Polygon Boundary Faces.

You should have at least one face (either Standard Boundary Face or Arbitrary Polygon Boundary
Face) for each non-empty boundary type listed in the boundary table above.

Caution: A single boundary type can be broken into several sections if you prefer. Also, boundary
face sections do not have to be in order. You may have a section of 10 faces of type 3, followed by a
section of 20 faces of type 2, followed by a section of 15 more faces of type 3. Also note that it is

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 494

Table of ContentsIndex

allowed to mix standard (triangular and quadrilateral) faces and arbitrary polygon boundary faces.
Hanging nodes are not permitted on boundary faces.

The node ordering for specifying faces should follow the right-handed rule (see FieldView Compli-
ance for Unstructured Data on page 420). In other words, nodes should be given by walking around
the perimeter of the face in a counter-clockwise manner. Hanging nodes are not permitted on bound-
ary faces. In the example presented herein (see code in /uns subdirectory of the directory where
FieldView is installed), there are 10 Standard Faces that belong to bottom, top and wall bound-
ary types, 9 Standard Faces that belong to trimmed node cell and hanging node cell boundary types,
and 4 Arbitrary Polygon Boundary Faces that belong to trimmed node cell and hanging node cell
boundary types (the cells are shown in the Arbitrary Polyhedron Cells on page 417). The first
boundary face type is bottom, with a rectangular face (4 nodes) consisting of nodes 1, 2, 4 and 3.
The second boundary face type is top, with a rectangular face consisting of nodes 9, 10, 12 and
11. Eight rectangular faces type wall are written after that. Nine Standard Faces that belong to
trimmed node cell and hanging node cell boundary types are written after that. Four Arbitrary Polygon
Boundary Faces that belong to trimmed node cell and hanging node cell boundary types are written
after all Standard Boundary Faces are written.

If a face is not a boundary, it is not necessary to define it in this section. The section must start with the
keywords Boundary Faces, followed by the number of faces that will be defined, as shown below.

 nbfaces = 10 + 13
 write(iunit, *) 'Boundary Faces', nbfaces

Boundary Faces 23

 write(iunit, *) 1, 4, (bot_faces(i,1), i=1,4)

1 4 1 2 4 3

 write(iunit, *) 2, 4, (top_faces(i,1), i=1,4)

2 4 9 10 12 11

 do 300 j = 1, 8
 write(iunit, *) 3, 4, (wall_faces(i,j), i=1,4)
 300 continue

3 4 1 2 6 5
3 4 5 6 10 9
3 4 3 4 8 7
3 4 7 8 12 11
3 4 1 3 7 5
3 4 5 7 11 9
3 4 2 4 8 6
3 4 6 8 12 10

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 495

Table of ContentsIndex

c First, write the triangular and quadrilateral (i.e., 3 or 4 node faces)
c that are a part of the trimmed and hanging node cell.
 write(iunit, *) 4, 3, (trim_cell_face(i,2), i=1,3)
 write(iunit, *) 4, 4, (trim_cell_face(i,5), i=1,4)
 write(iunit, *) 4, 4, (trim_cell_face(i,6), i=1,4)
 write(iunit, *) 4, 4, (trim_cell_face(i,7), i=1,4)
 write(iunit, *) 5, 4, (hang_cell_face(i,4), i=1,4)
 write(iunit, *) 5, 4, (hang_cell_face(i,5), i=1,4)

4 3 16 18 17
4 4 13 19 22 14
4 4 14 22 21 15
4 4 19 20 21 22
5 4 20 19 22 21
5 4 21 22 29 24

 write(iunit, *) 4, 5, (trim_cell_face(i,1), i=1,5)
 write(iunit, *) 4, 5, (trim_cell_face(i,3), i=1,5)
 write(iunit, *) 4, 5, (trim_cell_face(i,4), i=1,5)

4 5 13 14 15 16 17
4 5 15 21 20 18 16
4 5 13 17 18 20 19

 write(iunit, *) 5, 5, (hang_cell_face(i,1), i=1,5)
 write(iunit, *) 5, 5, (hang_cell_face(i,2), i=1,5)
 write(iunit, *) 5, 7, (hang_cell_face(i,3), i=1,7)
 write(iunit, *) 5, 5, (hang_cell_face(i,6), i=1,5)

5 5 20 21 24 25 26
5 5 24 29 28 27 25
5 7 20 26 25 27 28 30 19
5 5 22 19 30 28 29

3D elements (cells) are defined in the next section. The section must begin with the keyword Ele-
ments.

 write(iunit, *) 'Elements'

Elements

The elements are described as follows. Each element will get a type and a subtype (currently always
set to one). The Standard 3D element types are: 1-tetrahedron, 2-hexahedron, 3-prism, 4-
pyramid. Type 5 is assigned to Arbitrary Polyhedron 3D elements.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 496

Table of ContentsIndex

Standard 3D elements require between 4 and 8 node numbers (depending on the element type) to
define the element. The ordering of the nodes is important. See Standard 3D element types on
page 415 for node numbering information. The node numbers follow the element type.

The Arbitrary Polyhedron 3D elements are described as follows. First, the element type, 5, is written.
Next, the element subtype, 1 is written (at present, subtype is 1 for all elements; it is a reserved
field). After that, the number of faces, the number of nodes including the center node, and the center
node number are written. A negative integer number for the center node tells FieldView there is no
center node. Next, each face of the Arbitrary Polyhedron 3D element is described. For each face, the
number of face vertices, the vertex numbers, the number of hanging nodes and the hanging node
numbers are written.

In the example presented herein (see code in /uns subdirectory of the directory where FieldView is
installed) there are two hexahedral 3D elements (cells) and two arbitrary polyhedron elements: a
trimmed cell element and a hanging node element (the cells are shown in Arbitrary Polyhedron Cells
on page 417).

Two hexahedral cells are written as follows:

 write(iunit, *) 2, 1
 write(iunit, *) (hexes(i,1),i=1,8)
 write(iunit, *) 2, 1
 write(iunit, *) (hexes(i,2),i=1,8)

2 1
1 2 3 4 5 6 7 8
2 1
5 6 7 8 9 10 11 12

The first element is a hexahedron, consisting of nodes 1 through 8. The second element is also a
hexahedron, consisting of nodes 5 through 12.

Next, for the trimmed cell element we have:

 write(iunit, *) 5, 1
 write(iunit, *) 7, 11, 23
 write(iunit, *) 5, (trim_cell_face(i,1), i=1,5), 0
 write(iunit, *) 3, (trim_cell_face(i,2), i=1,3), 0
 write(iunit, *) 5, (trim_cell_face(i,3), i=1,5), 0
 write(iunit, *) 5, (trim_cell_face(i,4), i=1,5), 0
 write(iunit, *) 4, (trim_cell_face(i,5), i=1,4), 0
 write(iunit, *) 4, (trim_cell_face(i,6), i=1,4), 0
 write(iunit, *) 4, (trim_cell_face(i,7), i=1,4), 0

5 1
7 11 23

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 497

Table of ContentsIndex

5 13 14 15 16 17 0
3 16 18 17 0
5 15 21 20 18 16 0
5 13 17 18 20 19 0
4 13 19 22 14 0
4 14 22 21 15 0
4 19 20 21 22 0

All faces for the element are assumed not to have hanging nodes at them.

For the hanging node element we have:

 write(iunit, *) 5, 1
 write(iunit, *) 6, 12, -1
 write(iunit, *) 5, (hang_cell_face(i,1), i=1,5), 0
 write(iunit, *) 5, (hang_cell_face(i,2), i=1,5), 0
 write(iunit, *) 7, (hang_cell_face(i,3), i=1,7), 1, 31
 write(iunit, *) 4, (hang_cell_face(i,4), i=1,4), 0
 write(iunit, *) 4, (hang_cell_face(i,5), i=1,4), 0
 write(iunit, *) 5, (hang_cell_face(i,6), i=1,5), 0

5 1
6 12 -1
5 20 21 24 25 26 0
5 24 29 28 27 25 0
7 20 26 25 27 28 30 19 1 31
4 20 19 22 21 0
4 21 22 29 24 0
5 22 19 30 28 29 0

All faces for the element except face 3 are assumed not to have hanging nodes at them. Face 3
has one hanging node. Node number for the hanging node is 31.

Note: Keeping arbitrary polyhedron elements together is recommended but not required. The
arbitrary polyhedron elements can appear before, after, or in-between standard 3D elements
(tetrahedron, pyramid, prism, hexahedron) sections.

Next, the results variables for each node are listed in the same order as the nodes were defined. The
variables must be in the same order as in the Variable Names section. One needs to write out all of
the results, in node order, for variable 1 (in this case pressure), then all of the results, in node
order, for variable 2 (in this case u-velocity), etc. All of the data for the first variable is output
before any of the data for the second variable. The total number of real numbers should match the
number of nodes times the number of variables.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 498

Table of ContentsIndex

The section must begin with the keyword Variables. You should skip this section if the number of
variables is zero.

 if (nvars .gt. 0) then
 write(iunit, *) 'Variables'
 do 500 j = 1, nvars
 do 600 i = 1, nnodes
 write(iunit, *) vars(i,j)
 600 continue
 500 continue
 endif

Variables
1.0 0.1 1.2 0.1
1.1 0.2 1.1 0.2
…
1.18 1.18 1.18 1.18
(124 real numbers - 4 variables for 31 nodes)

Next, output the face data (boundary variable data) for this grid. Note that all of the data for the first
variable is output before any of the data for the second variable. Remember that the Boundary Table
above has a surface results flag indicating which boundary types have surface results. The data
should be written in the same order as the faces in the Boundary Faces section, skipping over faces
whose boundary type has a surface results flag of zero (false). For each variable, you should write
one number per boundary face. The section must begin with the keyword Boundary Variables.
You should skip this section if the number of boundary variables is zero.

 if (nbvars .gt. 0) then
 write(iunit, *) 'Boundary Variables'
 do 700 j = 1, nbvars
c The data for the bottom face is written first for each variable, because
c the bottom face was written first in the "Boundary Faces" section.
c Write data for variable#j for the "bottom" face:
 write(iunit, *) bot_bvars(j)
c Write data for variable#j for the "top" face:
 write(iunit, *) top_bvars(j)
c Skip the "wall" faces, because the surface results flag for the wall
c boundary type was 0 (false) in the Boundary Table section.
c Arbitrary Polyhedron boundary variables:
 write(iunit, *) (trim_cell_bvars(j,i), i=1,7)
 write(iunit, *) (hang_cell_bvars(j,i), i=1,6)
 700 continue
 endif

Boundary Variables
1.0

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 499

Table of ContentsIndex

1.0
1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.1 1.11 1.12 1.13 1.14 1.15
4.5
2.0
1.7 1.8 1.9 1.1 1.11 1.12 1.13
1.16 1.17 1.18 1.19 1.2 1.21
3.0
4.0
1.14 1.15 1.16 1.17 1.18 1.19 1.2
1.22 1.23 1.24 1.25 1.26 1.27
3.0
2.5
1.21 1.22 1.23 1.24 1.25 1.26 1.27
1.28 1.29 1.30 1.31 1.32 1.33

Closing of the file:

 close(iunit)

Important Notes:
1. All of the keywords shown above must be entered exactly as they appear in this document. They

are, however, case-insensitive.
2. Except where explicitly stated, every section described above must appear in the data file, even if

the capabilities provided by the section are not used. For example, if no Boundary Surfaces are to
be defined, both the Boundary Table and the Boundary Faces sections must still appear, with the
number of types and faces set to zero.

The following is a sample file and description of a simple 4 hex element mesh. Note that it is not
required that values such as "Constants" appear all on one line. The format shown below is valid,
but less compact. It has been shown this way for ease of readability.

FIELDVIEW 3 0 Header Line

Constants
0.0 Floating point number for TIME
0.2 Floating point number for FSMACH
15.0 Floating point number for ALPHA
1.6e06 Floating point number for RE

Grids
1 Number of grids

Boundary Table
3 Number of boundaries
0 0 1 inlet Boundary 1 is of type 0 (does not block flow),

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 500

Table of ContentsIndex

no face data present and it has the correct clockness.
It is called "inlet".

0 0 0 outlet Boundary 2 is of type 0 (does not block flow),
no face data present and it has the correct clockness.
It is called "outlet".

1 1 1 wall boundary Boundary 3 is of type 1 (a wall, does block flow),
face data is present and it has the correct clockness.
It is called "wall boundary".

Variable Names
2 Number of variables
pressure Names of variables
temperature

Boundary Variable Names
2 Number of variables
pressure Names of variables
temperature

Nodes
18 Number of nodes
0.0 0.0 0.0 X Y Z Coordinates of node 1
0.5 0.0 0.0 X Y Z Coordinates of node 2
1.0 0.0 0.0 X Y Z Coordinates of node 3
0.0 0.5 0.0
0.5 0.5 0.0
1.0 0.5 0.0
0.0 1.0 0.0
0.5 1.0 0.0
1.0 1.0 0.0
0.0 0.0 1.0
0.5 0.0 1.0
1.0 0.0 1.0
0.0 0.5 1.0
0.5 0.5 1.0
1.0 0.5 1.0
0.0 1.0 1.0
0.5 1.0 1.0
1.0 1.0 1.0

Boundary Faces
3 Number of boundary faces
1 4 1 4 5 2 Definition of boundary face (boundary type 1,

contains 4 nodes, node numbers 1, 4, 5, 2)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 501

Table of ContentsIndex

2 4 14 17 18 15
3 4 13 16 17 14

Elements
2 1 1 2 10 11 4 5 13 14 Element definition (hex element (type = 2),

subtype 1, nodes 1, 2, 10, 11, 4, 5, 13, 14)
2 1 2 3 11 12 5 6 14 15
2 1 4 5 13 14 7 8 16 17
2 1 5 6 14 15 8 9 17 18

Variables
0.0 0.1 0.2 0.1 0.2 0.3 Pressure values (in node order)
0.2 0.3 0.4 1.0 1.1 1.2
1.1 1.2 1.3 1.2 1.3 1.4
100 200 300 100 200 300 Temperature values (in node order)
200 300 200 200 350 400
355 405 500 100 200 300

Boundary Variables
0.0157 323 Only "wall" has face data and "wall" has only one

face. There is therefore only a single Boundary Variable
value for this face for each of the two normal variables,
pressure and temperature.

The file shown above is used to define the dataset shown in Figure 155.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 502

Table of ContentsIndex

 Figure 155 Example Unstructured Dataset

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 503

Table of ContentsIndex

Unstructured Data Input panel
To read the FieldView unstructured file, choose File -> Data Input -> FV-UNS. The following
panel will be invoked:

Transient Data
FieldView supports transient FV-UNS datasets. Transient FV-UNS data requires one file per time-
step. This is different from other solvers (FLOW-3D®, for example), where all data resides in a single
file. One advantage of this technique is that it is far easier to access a specific time-step during visual-
ization.

A dataset will automatically be recognized as transient if each file has a time step number embedded
in its name using a convention described in Transient Data.

If any one of the files of the series is chosen, FieldView will find other files with the same file naming
convention in the directory and present you with the option of treating the set as transient. If agreed to,
the chosen time-step will be loaded into memory, and the remaining filenames stored for reference.
Other time-steps can be accessed through the Transient Data Controls panel (see Transient Data
Controls for more details).

When the data is read in, it
may either Replace the data
currently in memory, or be
Appended to the current
data.

To read a Grid File in split format or a
Grid & Results file in combined for-
mat, click Read Grid or Combined
Data.

After reading of the Grid file is com-
pleted, you may click Read Results
Data to read a Results file in split for-
mat.

 Figure 156 Unstructured Data Input Panel

To read only the data at the
boundaries of the dataset,
turn this option on.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 504

Table of ContentsIndex

Creating FV-UNS files with FORTRAN 77 and C for different OS
General remarks on creating FV-UNS files with FORTRAN 77 and C for different operating systems.
CFD data can be read into FieldView using files in FieldView-Unstructured (FV-UNS) data format.
FV-UNS files may be created with FORTRAN 77 and C programming languages. This section
describes compiler and operating system related details of the creation process.

ASCII (formatted) data files can be created on any platform and can be read by FieldView on any sup-
ported platform. The statement is also true for binary (*.bin) files. They can be created and read by
FieldView on any supported platform. Writing binary FieldView-Unstructured files can be accom-
plished using C. When using FORTRAN 77 however, the data files may either be binary (*.bin) or
unformatted (*.unf) depending upon the platform and FORTRAN 77 compiler options. Unformatted
FieldView-Unstructured files are not platform independent. However, FV-UNS unformatted files cre-
ated as described below may be read by FieldView on any supported platform. (Unformatted files cre-
ated with Microsoft FORTRAN, or Digital Visual Fortran cannot be read by FieldView. For these
compilers you must write binary files.)

The following table shows what type of files can be created with FORTRAN on what FieldView plat-
form:

* Unsupported. For a table of supported compilers, see the Discussion section below.

The sample C code works on all platforms without any modifications needed. The sample FORTRAN
77 code may need modifications. This is detailed below.

For each unique platform, separate instructions are given to use or modify the existing sample FOR-
TRAN 77 code provided in the FieldView installation. Since the FORTRAN compilers on the HP, SUN
and IBM platforms provide the same functionality, these have been grouped together. When compiler
options are required, these are also provided.

ASCII FV-UNS files
ASCII (formatted) files can be created on any platform and read on any platform. However, these files
will be larger and slower to read in and will require more dynamic memory. Sample codes for creating
ASCII FV-UNS files can be found in the /uns subdirectory of the FieldView installation. The files
are:

SGI unformatted (*.unf) / binary (*.bin)

HP/SUN/IBM unformatted (*.unf)

PC w/Absoft Fortran (Windows or Linux) unformatted (*.unf)

PC w/Microsoft or Digital Visual Fortran* binary (*.bin)

PC w/Lahey Fortran* unformatted (*.unf)

write_split_ascii_uns.f sample FORTRAN code for creating split ASCII FV-UNS files
(grid file & results file)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 505

Table of ContentsIndex

Binary FV-UNS files
Sample codes for creating binary FV-UNS files can be found in the /uns subdirectory of the Field-
View installation. The files are:

It is possible to write binary files from FORTRAN 77 on only two platforms: SGI and PC (Windows). To
do this you must modify the sample FORTRAN code for writing unformatted FV-UNS files described in
Unformatted (FORTRAN 77) Format.

Source changes to the FORTRAN OPEN statement are given in the following table:

* Unsupported. For a table of supported compilers, see the Discussion section below.

Note: Binary files cannot be created in FORTRAN 77 on the following systems: HP, SUN and PC
(Windows or Linux) with Absoft FORTRAN.

UNFORMATTED FV-UNS files
Sample codes for creating unformatted FV-UNS files can be found in the /uns subdirectory of the
FieldView installation. The files are:

write_ascii_uns.f sample FORTRAN code for creating a combined ASCII FV-
UNS file

write_split_binary_uns.c sample C code for creating split binary FV-UNS files (grid file &
results file)

write_binary_uns.c sample C code for creating a combined binary FV-UNS file

Platform Source Changes Needed Compiler Switches

SGI FORM='UNFORMATTED' to
FORM='SYSTEM' in the OPEN
statement

none

PC w/Microsoft or Digital
Visual FORTRAN*

FORM='UNFORMATTED' to
FORM='BINARY' in the OPEN
statement

none

write_split_unformatted_uns.F sample FORTRAN code for creating split unformatted
FV-UNS files (grid file & results file)

write_unformatted_uns.F sample FORTRAN code for creating a combined unfor-
matted FV-UNS file

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 506

Table of ContentsIndex

Changes that may be necessary to the source code, and compiler switches that may need to be used
to create unformatted files, are shown in the following table:

* Unsupported. For a table of supported compilers, see the Discussion section below.

Note: Unformatted files created with Microsoft FORTRAN or Digital Visual Fortran cannot be read by
FieldView. For these compilers you must write binary files.

Discussion
The information presented above is valid for the following supported compilers:

The information presented in this document is valid for compiler versions given in the above table. For
compilers different from those shown in the above table, the sample code and the information may not
be correct.

It is possible to write binary files from FORTRAN on only two platforms: SGI and PC (Windows).

SGI
On the SGI, it is easiest to open the file with FORM='SYSTEM' (not BINARY). You then use unfor-
matted write statements to write to the file.

FORM='BINARY' can be used, but then you have to use formatted write statements that use the char-
acter '(A)' format.

HP/SUN/IBM

Platform Source Changes Needed Compiler
Switches

SGI None none

HP/SUN/IBM None none

PC w/Absoft FORTRAN (Windows or
Linux)

None -N3

PC w/Lahey FORTRAN* Add
ACCESS='TRANSPARENT'
in the OPEN statement

none

Platform C Fortran 77

SGI 7.2 7.2

SGI (64-bit) 7.3 7.3

IBM 3.1.4.0 4.1.0.0

Sun 5.0 5.0

HP G.10.32.05 B.10.20.09

PC w/Absoft - 6.2 (Windows) or 7.0 (Linux)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 507

Table of ContentsIndex

These platforms do not support binary format output from FORTRAN 77, only C.

PC w/ Absoft FORTRAN
Absoft FORTRAN under Windows, or Linux, does not support binary format output from FORTRAN.

To write FieldView-compatible unformatted files using this compiler, you need to compile with the "-
N3" option. The files should be opened and written in the usual way for unformatted files - no source
code changes are needed.

Microsoft and Digital Visual FORTRAN (unsupported)
In Microsoft FORTRAN PowerStation 32 Version 1.0 and Digital Visual FORTRAN Versions 5.0 and
6.0, the file is opened with FORM='BINARY'. You then use unformatted write statements to write to
the file.

Note: In these compilers, files written with FORM='UNFORMATTED' have a completely different for-
mat from Unix unformatted files. They cannot be read by FieldView, even on machines with the same
byte order.

Lahey FORTRAN (unsupported)
Lahey FORTRAN does not support binary format output from FORTRAN 77. To write FieldView com-
patible unformatted files using this compiler, use FORMAT='UNFORMATTED', ACCESS='TRANSPAR-
ENT' in the OPEN statement prior to writing the file.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix D 508

Table of ContentsIndex

2D FV-UNS FILES
There are two methods that can be use to write 2D FV-UNS files.

Method 1
Since FieldView really only handles 3D data well, it is best to introduce some thickness to make it a
skinny 3D problem.

Here are the steps you will need to accomplish this to write FV-UNS ASCII files:

1. Assign Z values of zero to the original 2D nodes.

2. Double the number of nodes by appending a second copy of the array of nodes to itself. Assign Z
values of 1e-5 or greater to the second copy of the nodes.

3. Use the nodes with Z == 0 and the corresponding nodes with Z >= 1e-5 to create elements
with a very slight depth to them. Use prisms (wedges) for triangles and hexahedrons for rectan-
gles. You should be able to arrange things so that the node indices you use for one end of 3D ele-
ments are simply the indices for a triangle or rectangle. The other end would be the same indices
plus the original number nodes - the offset to the second copy of the original nodes.

4. Any vector result that does not supply 3 variables must pad the vars array with zeros where the
missing variable would otherwise be. This applies to 3D problems as well. If only U velocity is
present in results, both V and W velocity need to be padded in the array we pass to Field-
View if, and only if, it is specified to be part of a vector function. The variable must also be present
in the table of variable names at the top of the file.

5. Double the number of variables by appending a second copy of the array of variables to itself. This
is required since we doubled the nodes.

Method 2
Create a file of 3 and/or 4 noded faces. FV-UNS format requires at least one element. If you specify a
single dummy element you can then specify as many faces as you want. The downside is that the only
useful visualization of these faces would be as FieldView boundary surfaces. You could not probe
these faces for results values or create coordinate or iso surfaces from this data. If you only require
this data to show your model geometry this is a valid approach.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix E 509

Table of ContentsIndex

Appendix E Colormap File Format

The eight default colormap button labels and their corresponding colormap file names are listed below.
These colormaps are accessed from the Colormap Specification panel.

Button Label File Name

Spectrum fv/data/colormaps/c1.col
Gray Scale fv/data/colormaps/c2.col
Zebra fv/data/colormaps/c3.col
Striped fv/data/colormaps/c4.col
Color Striped fv/data/colormaps/c5.col
Black & White fv/data/colormaps/c6.col
NASA-1 fv/data/colormaps/c7.col
NASA-2 fv/data/colormaps/c8.col

File Naming Convention
The general form for the colormap filename is shown below:

file_name.col

The first part of the filename may contain up to 255 alpha characters, numbers, or underscores (Note:
spaces are not permitted).

Note: User Defined Colormaps on page 74 of Working With FieldView for placement of
.col files so that they are available on the GUI. Also, Colormap file names (.col) are stored in
Colormap (.map) Restart Files which can be used as part of a Preference Restart. See Pref-
erence Restart on page 12 of the User’s Guide for information on where these restarts can
be placed to load automatically.)

The colormap file is an ASCII text file which has the following format:

Name
N (number of entries)
red_1 green_1 blue_1
red_2 green_2 blue_2
red_3 green_3 blue_3
...
red_N-2 green_N-2 blue_N-2
red_N-1 green_N-1 blue_N-1
red_N green_N blue_N

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix E 510

Table of ContentsIndex

Note: FieldView requires at least two entries. If only one color is desired, then enter the
same line twice.

The Name Field
The Name field represents one line of ASCII text which appears on the first line of each colormap file.
Although the application currently ignores this line of text (i.e. it will not show up in the FieldView inter-
face), it is intended to indicate the name of the colormap. Some example names are Spectrum, Gray
Scale, Zebra, or Striped. Any name with up to 256 characters can be specified.

The N Field
The N field represents an ASCII integer which appears on the second line of each colormap file. This
integer must be greater than or equal to 2 (two). See the notes on Colormap File Compression and
Expansion for a detailed explanation of how colormap files are read by the application.

The Red Green Blue Fields
Each line of text after the integer N represents an RGB color triplet. Each element of a triplet is an
ASCII floating point string in the range of 0.000000 to 1.000000. The number of lines of RGB trip-
lets must match the value of N in the colormap file. For example, the following six RGB triplets repre-
sent the colors White, Black, Red, Green, Blue, and 50% Gray, respectively:

1.000000 1.000000 1.000000 (White)
0.000000 0.000000 0.000000 (Black)
1.000000 0.000000 0.000000 (Red)
0.000000 1.000000 0.000000 (Green)
0.000000 0.000000 1.000000 (Blue)
0.500000 0.500000 0.500000 (50% Gray)

Note: The rightmost column is not part of the file format, but is shown for guidance only.

Limitations:
Out of range RGB values
RGB values must lie between 0.000000 to 1.000000. Values specified outside this range will be
silently clamped to either the lower or upper range limits.

Colormap File Compression and Expansion
The number of scalar colors which can be displayed is 100. This is the Internal Scalar Colormap
Size.

Compression
If the size of a colormap file is greater than the Internal Scalar Colormap Size, then colormap file is lin-
early sampled to fit the Internal Scalar Colormap Size.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix E 511

Table of ContentsIndex

Expansion
If the size of a colormap file is less than the Internal Scalar Colormap Size, then the colormap file is
evenly expanded to fit the Internal Scalar Colormap Size. Note that colors from the colormap file are
duplicated to fit the new size and not interpolated.

Note that the first and last colormap entries always appear as the first and last colors in the Internal
Scalar Colormap, respectively.

Colormap Expansion Example
If you specify only three colors such as red, white, and blue, and if the Internal Scalar Colormap Size is
100, then the colormap file would be expanded. Internal colors 1 through 33 would be red, colors
34 through 66 would be white, and colors 67 through 100 would be blue.

Colormap Compression Example
If the Internal Scalar Colormap Size is 100, and the colormap file has 1000 entries, then the internal
colormap would be set to the values which are linearly sampled from the colormap file.

Note that the first and last entries of the Internal Scalar Colormap are always set to the first and last
entries of the colormap file, respectively.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix F 512

Table of ContentsIndex

Appendix F FieldView Limits

The following limits apply:

Per Session
Input data / Maximum number of Grids:

1,000,000 grids: HPC FieldView (Linux only)
100,000 grids: Linux and Mac Client & Server
50,000 grids: Windows Client & Server

Number of partition files in PFPR layout file: Limited to 1,342 per FieldView “worker” process. Note
also that all Layout files in a potential time series must specify the same number of partitions.

Maximum number of Datasets: 3000

Maximum number of Regions:

Bounded by the Maximum number of Grids (see above)

Maximum number of Annotation Objects (Text & Arrows): 100

Maximum Image Size when running batch mode with software rendering:

• with Anti-aliasing off: 8192 X 8192

• with Anti-aliasing on: 4096 X 4096

Maximum number of registered User-defined Functions: 500

Maximum number of bytes in a User-defined Function name: 119
Due to support for international fonts, each character may need more than 1 byte.

Maximum number of zoom levels: 10
This is the zoom initiated with View > ZoomBox, or its associated Toolbar button on the “Side Toolbar”

Maximum number of bytes in a Filename (including full pathname): 255

Per Dataset
Maximum number of bytes for a variable name: 80

Maximum number of Scalar variables: 2048
PLOT3D Q variables don't count.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix F 513

Table of ContentsIndex

Maximum number of Vector variables: 400
PLOT3D Q variables don't count.

Maximum number of Boundary Face Scalar variables: 1000

Maximum number of Boundary Face Vector variables: 1000

Maximum number of formulas: 2999

Maximum number of Boundary Types: 20,000

Maximum number of bytes for a Boundary Type name: 80

Maximum number of bytes for a region name: 80

Maximum number of transient time steps: 100,000
When using PFPR, the number of time steps times the number of partition files cannot exceed one bil-
lion.

Maximum number of Dynamic Clip Groups at a time: 12
Each Clip Group is composed of up to 16 lines, 4 boxes, or a combination (each box counts as 4 lines).

Per Grid
Maximum number of Nodes ; Maximum number of Elements: 2,147,483,647
This is the maximum value of a (signed 32-bit) integer in Fortran and C. Other restrictions from the
hardware and software environment may also apply.

If you do not use the Intel Fortran compiler, the maximum size for FORTRAN UNFORMATTED records
is 2GB. This imposes a limit of approximately 666 million nodes or elements per grid (2 billion divided
by 3).

By Object

Legends
Maximum number of legend labels: 52

Surfaces
Number of contour lines: 500

Number of Filled Contours: 100

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix F 514

Table of ContentsIndex

Streamlines
Maximum number of Seeds per Streamline Rake: 2000

Maximum number of Streamline Steps: 10,000 (5,000 in each direction if ‘Both’)

Maximum ribbon width: 1024

Maximum number of Animation Steps for display types Growing, Spheres & Lines, Spheres,
and Dots: 1000

Maximum number of Filaments, Spheres, Arrows, or Dots on a single streamline: 1000
Applies to display types:

Filament
Filament & Spheres
Filament & Arrows
Lines of Spheres
Lines of Dots

Annotation
Maximum number of bytes in a Text object: 512

2D Plots
Maximum number of plots per dataset: 9

Maximum number of paths per plot: 10

Maximum number of tick marks: 500

Arbitrary Polyhedra
Maximum number of faces for an arbitrary polyhedron cell: 256

Maximum number of vertices for a single face of an arbitrary polyhedron cell (also maximum
number of vertices for an arbitrary polyhedron boundary face): 256

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix G 515

Table of ContentsIndex

Appendix G 2D Plot Format

This format is used for both the Point Probe output and the 2D Plot export/import options. The file for
each plot/probe contains a two line header. The keyword VARIABLES, on the first line, is followed by
the names of the functions used in the plot or shown by the probe. The keyword ZONE, on the second
line, delimits a contiguous region of points and function values. If more than one plot is exported, each
plot will be separated by a ZONE section. The required J=1 indicates the data format being used.
The optional section T= is used for the annotation of the legend. Any text following the T= keyword
and enclosed by double quotes will be displayed in the legend field on the plot.

Following the two line header are the values of x, y, and z, and values for as many functions as are
defined on the VARIABLES line. The syntax of this format is as follows:

VARIABLES = "X", "Y", "Z", "Function 1" [, ... "Function n"]
ZONE J=1 [, T="Legend"]

For 2D Plot, the format is:

x1 y1 z1 f1 [f2]
x2 y2 z2 f1 [f2]
...
xn yn zn f1 [f2]

where f2 is the threshold function.

For Point Probe, the format is:

x1 y1 z1 f1 [f2 f3 ... f6]
x2 y2 z2 f1 [f2 f3 ... f6]
...
xn yn zn f1 [f2 f3 ... f6]

where f1 - f6 are the scalar, threshold, vec1, vec2, vec3 and iso functions.

Note: The 2D Plot GUI ignores ["Function 3", ... "Function n"]. "Function
2" data can be displayed by showing 'right axis' (the same way as showing the threshold
function value).

Cylindrical Note: When cylindrical coordinates are specified using an FVREG file (Region definition),
the input is assumed to be in RTZ coordinates and the output values and labels are also RTZ (Radius,
Theta, Z). See Chapter 3 for more information.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix H 516

Table of ContentsIndex

Appendix H Structured Boundary Files

A Structured Boundary Surface file is used to group several computational surfaces by name. This
allows you to use the Boundary Surface panel for structured grids, and create groups of named entities
as one surface. Making changes to these surfaces or using them for plotting or streamline seeding
should be much easier.

The Structured Boundary Surface file must have the same name as the grid file, with a .fvbnd
extension. For example, if your grid file is named:

test.bin

The Structured Boundary file must be named:

test.bin.fvbnd

The file is read automatically when the grid file is read. Afterwards, the boundaries will be accessible
on the Boundary Surface panel. A structured boundary file for the bluntfin dataset has been
included in the examples directory of the FieldView installation and is called blunt-
finx.bin.fvbnd.

Note: FieldView will only look for all upper or all lower case suffix names. Mixed case suf-
fixes will not be seen. That is, test.bin.Fvbnd is an invalid Structured Boundary file
name.

Transient PLOT3D
If a Structured Boundary file is used for transient PLOT3D files, then there are two valid file naming
conventions. The easiest option is to have one global FVBND file for the entire transient sequence.
This file would take the root name of the grid or grid/results file without any embedded time step num-
ber. The other option is to use one FVBND file for each grid or grid/results file, using the same naming
convention. These two options are illustrated in the following example for the case of transient
PLOT3D data:

Grid File Separate FVBND Files Global FVBND File

duct_0010.g.bin duct_0010.g.bin.fvbnd duct_.g.bin.fvbnd
duct_0020.g.bin duct_0020.g.bin.fvbnd
duct_0030.g.bin duct_0030.g.bin.fvbnd
... ...
duct_1080.g.bin duct_1080.g.bin.fvbnd

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix H 517

Table of ContentsIndex

Important Note: Although the “one file per time step” naming convention is allowed, every
FVBND file must be identical.

Face Data and Surface Normal Information
The format for the Structured Boundary file has been enhanced for use with Face Data (see Chapter 1
and later in this appendix for more information on Face Data with PLOT3D formats). This format is
specifically for Face Data boundary definitions, but can be used even without face data results. It is
the default format used when the Create Wall and Create Exterior tools are used. Previous formats of
the Structured Boundary file are still supported. However, if the Create Wall or Create Exterior tools
are used when an older FVBND file already exists, a file in the newer format described herein will be
created.

The format also allows the specification of boundary surface normal directions. This information, if
present, is used by FieldView to calculate normal-based boundary surface integrals. This is indepen-
dent of the presence or absence of face data. Face data variables, whether scalar or vector, are not
available for use with the CFD Calculator on the Function Formula Specification panel.

CFX-4
This file allows the Boundary Surface panel to display CFX-4 defined boundaries. CFX-4 Structured
Boundary files use the older FVBND 1 3 format described in this appendix. This reader automatically
creates structured boundary files in the same directory in which the data files are found. They have
the same base file name as the data file (*.dmp) with an additional .fvbnd extension. So, if the
data file is called tmp.dmp then the corresponding structured boundary file will be named
tmp.dmp.fvbnd. Note that if the user does not have write access to this directory FieldView will
issue a message:

Failed to write structured boundary file

and the file will not be generated. In addition, if an older .fvbnd file (with the same name) already
exists and the user does not have file permission to overwrite it, the boundary information may not be
correct and the file will not be read in if the grid information found in this older .fvbnd file is different
from that for the current grid.

NPARC/WIND and WIND US
This file allows the Boundary Surface panel to display NPARC/WIND and WIND Structured Common
File defined boundaries. Structured Boundary files use the newer format described below. Structured
boundary files are automatically created when using this reader. They are written in the same direc-
tory in which the data files are found. They have the same file name as the grid file (.cgd) or the com-
bined file (.cgf) but with an additional extension of .fvbnd. Therefore, if the data file is called

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix H 518

Table of ContentsIndex

tmp.cgd then the corresponding structured boundary file will be named tmp.cgd.fvbnd. Note that
if the user does not have write access to this directory FieldView will issue a message:

Failed to write structured boundary file

and the file will not be generated. In addition, if an older .fvbnd file (with the same name) already
exists and the user does not have file permission to overwrite it, the boundary information may be
incorrect and will not be read in if the grid information found in this older .fvbnd file is different than
that for the current grid.

If the user wishes to disable the writing of the structured boundary file, the environment variable
FV_NO_BNDRY_FILE needs to be set (to any value).

Note: The NPARC/WIND reader creates structured boundaries only at I=1, I=MAX, J=1,
J=MAX, K=1, K=MAX of each zone, and only if they are “full face boundaries”. No interior
boundaries will be created.

Create Wall Bnd File
This tool will create a Structured Boundary file with a boundary type wall for all no slip walls, and
boundary types "wall-grid#" per grid (if the dataset is single grid the per grid boundary names
are omitted). These boundaries will specify the exteriors of each grid where velocity is zero. Complete
details on this tool can be found in Chapter 14 of Working with FieldView. Note that this feature can-
not be used if your data has been read with Parallel FieldView, unless read in Partitioned File (PFPR)
format. If tried, FieldView will issue a corresponding message.

Create Exterior Bnd File
This tool will create a file named gridfilename.fvbnd with boundary types exterior-grid#
(if the dataset is single grid the grid number is omitted from the boundary name). These boundaries
will specify the exteriors of each grid. Once created, they will then be available with the Boundary Sur-
face panel (see Chapter 10 of Working with FieldView for details). Note that this feature cannot be
used if your data has been read with Parallel FieldView, unless read in Partitioned File (PFPR) format.
If tried, FieldView will issue a corresponding message.

File Format
The format of the file is described below. This simple file format can be used to create your own Struc-
tured Boundary file for use with a structured dataset. This is also the format that is used by the Create
Wall and Create External Boundary surface tools (see Chapter 14 of Working with FieldView for
more information about these tools). The automatic file creation by the CFX-4 reader uses the older
FVBND 1 3 format, described in this appendix. The FVBND 1 3 file format differs from the FVBND 1 4

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix H 519

Table of ContentsIndex

file format, described here, by the absence of the results_flag and normal_dir parameters
(see below).

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix H 520

Table of ContentsIndex

Line 1: Header - This line must exactly as shown below:
FVBND 1 4

The next few lines list the boundary types. These are the names of the boundaries as they will appear
in the Boundary Surface panel. (Note that the names cannot begin with a number.) For example:

wall
inlet
symmetry

After the boundary types, a keyword must appear exactly as shown below to indicate the start of the
boundaries section:

BOUNDARIES

Next, the actual boundaries are written. Each line defines a boundary ‘patch’ and has the following
information:

type grid-number I-min I-max J-min J-max K-min K-max results_flag nor-
mal_dir

where
type Boundary type number from the table above (e.g. "1" for type "wall").

results_flag T (or t) if there exists a boundary results file (Function file) with face data
for this patch, and F (or f) if there is no face data.

normal_dir Integer value which is: positive (surface normal points towards increasing
IJK), negative (normal points towards decreasing IJK), or 0 (normal
direction is unknown or unspecified).

If I-min is set equal to I-max, then the surface is assumed to be an I surface equal to that value.
This is also true for J and K. If none of these are equal, an error will be displayed when the file is
read. A wildcard ("$") may also be used to indicate that the value should be set to the maximum for
that grid.

The direction of the surface normal is computed as follows. If the IJK coordinate system is right-
handed, then the surface normal points towards increasing IJK. In other words, it points in the direc-
tion of increasing I for an I surface, the direction of increasing J for a J surface, and the direction
of increasing K for a K surface. If the IJK coordinate system is left-handed, then the surface nor-
mal points towards decreasing IJK.

To determine whether the IJK coordinate system is right-handed, one needs to compute the cross-
product of a vector pointing in the direction of increasing I and a vector pointing in the direction of
increasing J. If the direction of the vector obtained as the cross-product is the same as the direction
of the vector pointing in the direction of increasing K, then the IJK system is right-handed. If the
direction of the vector obtained as the cross-product is opposite to the direction of the vector pointing
in the direction of increasing K, then the IJK system is left-handed. The right-hand rule may be used

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix H 521

Table of ContentsIndex

to determine the direction of the cross-product result. A right-handed IJK system is shown in Figure
157 below.

Note: If you have two results files (solver runs) for the same grid, one with face data and one
without, then two different FVBND files will exist. However, both FVBND files need to have
the same filename. Therefore, they must be saved under different names and renamed when
needed. (Ex.: grid file - case4.xyz, face data FVBND file - case4_face.xyz.fvbnd, no-
face data FVBND file - case4_noface.xyz.fvbnd. When you want one or the other to be

used when reading in the grid, you must rename that one to case4.xyz.fvbnd).

A sample file is shown below:

FVBND 1 4
wall
inlet
outlet
BOUNDARIES
1 1 1 20 1 30 1 1 T 1 This defines a part of the boundary called "wall" on grid 1

where K=1 for I=1 to 20 and J=1 to 30.
Face data exists and the normal direction is in the direction of
increasing IJK.

1 1 1 20 1 1 1 35 F 0 Another part of the wall on grid 1, where J=1 for I=1 to
20 and K=1 to 35. No face data, no normal direction.

2 3 1 1 2 5 3 10 F 0 A part of the inlet boundary on grid 3, where I=1, J=2 to
5 and K=3 to 10. No face data, no normal direction.

3 1 1 1 1 1 1 20 F 0 A part of the outlet on grid 1, where I=1, J=1 and K=1 to
20

1 2 1 $ 1 $ 1 1 F 0 A wall on grid 2, where K=1 for all I and J. No face data,
no normal direction.

 Figure 157 Right-handed IJK system

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix H 522

Table of ContentsIndex

Note that boundary names in structured boundary files must start with an upper or lower case charac-
ter. Examples of valid names are:

left-1
RIGHT_2
bottom 3
l e f t-4
right-2

Examples of invalid names are:

1 top
_top

Face Data for PLOT3D Data
FieldView supports face-based results on boundary surfaces of PLOT3D data. In order to provide
face results for a 3D dataset, three additional files will need to be created. The first is a special form of
the Structured Boundary file (*.fvbnd) which communicates the boundary surface definitions
(described earlier in this appendix), the surface normal directions, and whether there are face results
for each of the boundary surfaces. The second is a 2D Function File, which contains the face results
for those boundary surfaces that have them and the third is a Function Name file which communicates
the names of the face result variables to FieldView.

Face Data and Function Files
FieldView supports face-based results on boundary surfaces of PLOT3D data. In order to provide
face results for a PLOT3D dataset, one of the additional files needed is a standard 2D Function File
which contains the face results for those boundary surfaces that have them. That is, the face data file
for a 3D dataset is a 2D, not a 3D, file. The Function file should have the same file name as the results
file plus an additional extension: *.fvsrf.

We will use the term "boundary patch" for each definition line in the Structured Boundary file
(*.fvbnd). Each such line is a computational surface.

Note: Every boundary patch must have the same number of face data variables as every
other patch.

Example File Set:

Grid File xyz.bin
Structured Boundary File xyz.bin.fvbnd

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix H 523

Table of ContentsIndex

Q File (3D) case4.q.bin
Face Data Function file (2D) case4.q.bin.fvsrf
Face Data Function Name file case4.q.bin.fvsrf.nam

Important: The 2D Function file must be in multi-grid format, even if there is only one boundary patch.
Also, the format (ASCII, UNFORMATTED, BINARY) must be the same as for the Results file.

Face Data and Function Name Files
FieldView supports face-based results on boundary surfaces of PLOT3D data. In order to provide
face results for a 3D dataset, one of the additional files needed is a standard 2D Function File which
contains the face results for those boundary surfaces that have them. In order to communicate the
names of the face data functions to FieldView, a Function Name file needs to be used, like those
described in Appendix C of this Reference Manual.

Example File Set:

Grid File xyz.bin
Structured Boundary File xyz.bin.fvbnd
Q File (3D) case4.q.bin
Face Data Function file (2D) case4.q.bin.fvsrf
Face Data Function Name file case4.q.bin.fvsrf.nam

Example:

Pressure
Temperature
ShearStress_x; ShearStress
ShearStress_y
ShearStress_z

Note: To differentiate face data (boundary variables) from identically named volume vari-
ables, all face data names will be appended with [BNDRY], except when default names are
used (see below). Therefore, in the above example, on the Function Selection panel, the
first variable will appear as Pressure [BNDRY]. This is true even if there are no identi-
cally named volume variables.

Default Names: Like “normal” Function Files, if a Function Name file does not exist, FieldView will use
default names. The default names for face data functions are: B1, B2, …, BN. The same error
conditions for “normal” (non-face data) Function Name files hold (see Appendix C of this Reference
Manual).

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix I 524

Table of ContentsIndex

Appendix I Plain Text Export Format

This section describes, with examples, the FieldView Plain Text Export format. Files may output vertex
values (IJK - if structured data), spatial data (XYZ) and function data (registers) for any surface type
(Computational, Coordinate, Iso- and Boundary) or rake (Streamlines). Export files are ASCII and are
formatted as columnar data.

NOTE: Current FieldView versions also support CSV (comma separated values) and computationally
efficient binary MAT (Mat file format) exports as additional options for object types Unstructured
Boundary and Coordinate Surfaces. For details on those formats, please refer to Appendix J and
Appendix K, following this section. Note also that exports in CSV / Mat-file formats can be used for
input to Point Query... mentioned in Working with FieldView.

Note: The streamline and 2D Plot export files can be read back into FieldView.

Cylindrical Note: When cylindrical coordinates are specified using an FVREG file (Region
definition), the XYZ labels (and values) become RTZ (Radius, Theta, Z) labels and values
for Iso-Surfaces, Coordinate Surfaces and Boundary Surfaces. Computational Surface

exports are unaffected. See Chapter 3 for more information.

In general, each surface Export file contains two sections. The first contains information about the
location of the surface (if applicable) along with grid and function information for the surface. The sec-
ond section contains information to reconstruct the polygons that constitute the surface.

This second section begins with the header word GEOMETRY. The second line contains the point
count and the number of polygons to follow. This is followed by a listing of the polygons using the node
numbers implied from the node information contained in the first section of the file. No special pro-
cessing of duplicate nodes will be done. No triangulation will be done for warped (non-planar) poly-
gons. A GEOMETRY section line such as

4 1 8 10 2

indicates that the polygon is a hex (4 nodes) and that it can be recreated by joining the nodal IJK or
XYZ information contained in lines 1, 8, 10 and 2 of the first section of the file, in that order or a
permutation thereof (i.e. 8, 10, 2, 1 is valid but mixing the order, such as 1, 10, 8, 2 is not).

Note: Nodes removed by thresholding will not be output. Nodes created by thresholding will
be output so that the clipped polygon may also be output in the geometry section.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix I 525

Table of ContentsIndex

Computational Surfaces
This will dump out the values at the grid points of the comp surface. The file format shall be: a header
showing the grid number and surface type (Grid 4 K=5), followed by a line containing a point count,
followed by a header line for the columns of data (I J K X Y Z F1 F2 ...). Next, the data val-
ues, sorted in IJK order, are output to the file. The data will be: all 3 coordinates (even the con-
stant one), X, Y, Z and the values from the function registers (up to 2 scalars and 1 vector).

Note: The iso-surface register will not be output. An example file follows. This file has been
truncated for brevity while still displaying the pertinent aspects of the file format. A
"(…cont.)" will signify truncation. The dataset used for the examples is a simple cube with
4 nodes in each IJK direction. Also, for ease of display, the number of spaces between
each column of the data values has been decreased from 13 to 5.

Example:

Grid 1 I = 2
36
I J K X Y Z S U V W T
2 1 1 0 0 1 10 4 44 35 -53.14
2 2 1 0 1 1 1 44 35 26 -761.8
(…cont.)
GEOMETRY
9
4 1 8 10 2
4 3 11 13 4
4 5 16 18 6
4 7 19 22 9
4 12 21 25 15
4 14 26 29 17
4 20 31 32 23
4 24 33 34 27
4 28 35 36 30

Coordinate Surfaces
By default the data at the nodes of the coordinate surface (the locations stored by FieldView to draw
the surface) will be output. Again, the file starts with a header showing the type and location of surface
(X=0.5), followed by a line containing a point count, followed by a header line for the columns of data
(X Y Z F1 F2 ...). Next, the data values are output to the file. The data should be: the 3 coor-
dinates (even the constant one) and the values from the 3 function registers. The data should be
sorted in coordinate order. For example, a Z surface will first be sorted in X, with a minor sort in Y,
an X surface sorted by Y, and a Y surface sorted by X.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix I 526

Table of ContentsIndex

If the user has uniform sampled vectors for the current surface, these X, Y, Z locations and scalar
and vector function values will be output instead of the nodal data. The geometry section will be cre-
ated by outputting a single polygon containing all the points. The point count for this “polygon” will be
zero.

Cylindrical Note: When cylindrical coordinates are specified using an FVREG file (Region
definition), the XYZ labels (and values) become RTZ (Radius, Theta, Z) labels and values.
See Chapter 3 for more information.

Example:

X = 1.5
36
X Y Z S U V W T
1.5 0 0 18 7.5 23 40 -21.597
1.5 1 0 7.5 21.5 38.5 31 -371.286
1.5 1 0 7.5 21.5 38.5 31 -371.286
(...cont.)
GEOMETRY
9
4 2 1 7 11
4 12 8 20 22
4 23 19 31 32
4 4 3 9 15
4 16 10 21 28
4 27 24 33 34
4 6 5 13 17
4 18 14 25 30
4 29 26 35 36

Iso-Surfaces
The file will begin with header showing the type of surface (Pressure = 0.618), followed by a line
containing a point count, followed by the column header and data as described for Coordinate Surface.

Cylindrical Note: When cylindrical coordinates are specified using an FVREG file (Region
definition), the XYZ labels (and values) become RTZ (Radius, Theta, Z) labels and values.
See Chapter 3 for more information.

Example:

Density (Q1) = 1.52256
27
X Y Z S U V W T

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix I 527

Table of ContentsIndex

0 0.03 0 1.52 42.6 33.6 24.6 -693.683
1 0.97 0 1.53 39.2 35.4 26.3 -680.365
(...cont.)
0 1.01 1 1.53 43.8 34.8 25.8 -751.955
0 1 1.0 1.53 41.9 35.5 26.5 -724.669
GEOMETRY
7
3 2 5 17
6 3 1 15 19 21 14
3 20 18 27
6 6 9 13 22 25 16
3 24 23 26
3 8 4 12
3 10 7 11

Boundary Surfaces
The boundary faces and values at the grid point should be output. The first line is a header (which
should read: Boundary Surface). Next is a line containing a count of boundary types, followed by the
boundary types (one per line). The boundaries listed are types that are used by the exported surface.
Following this is the data. Data is identical to an Iso-surface and Coordinate Surface export (except
that it is not sorted) for an unstructured boundary surface. For Structured Boundary Surfaces, the out-
put will be like a series of Computational Surfaces, except that the points will not be sorted.

Cylindrical Note: When cylindrical coordinates are specified using an FVREG file (Region
definition), the XYZ labels (and values) become RTZ (Radius, Theta, Z) labels and values.
See Chapter 3 for more information.

Face Data Note: Boundary surface export files will not contain face data for those registers
loaded with face data. Only those registers with non-face data (“volume” data) will be exported. The
export file contains nodal values, and the nodes can be shared by more than one face, so in the exam-
ple below, the Threshold register (normally indicated by a “T” column) was loaded with face data, and
so was not exported. The numbers and spacing of the following example have been compressed for
better readability.

Example:

Boundary Surface
3
body (7616 faces)
wing (2400 faces)
tail (1056 faces)
Grid 1 J = 1
7168
I J K X Y Z S U V W

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix I 528

Table of ContentsIndex

1 1 1 0 0 0 0.994 0.218 0.201 0
1 1 2 0 0 0 0.994 0.218 0.201 0.0141
2 1 2 0.03 0.022 0.00208 0.9927 0.2649 0.1527 0.0090
2 1 1 0.031 0.0230 0 0.99275 0.2644 0.15300 5.90721e-018
2 1 1 0.0314 0.023 0 0.9927 0.2644 0.15300 5.90721e-018
2 1 2 0.0314 0.0229 0.00208 0.9927 0.2642 0.15275 0.00903411
3 1 2 0.0979 0.0524 0.00445 0.99042 0.28535 0.1098 0.0042317
...
32 1 57 1.39 -0.058 0 1.0286 0.1852 -0.00045 1.14027e-017
33 1 57 1.41 -0.059 0 1.0289 0.1847 -0.0060 1.13987e-017
33 1 56 1.419 -0.057 0.0147 1.0276 0.1840 0.0022 0.0146064
GEOMETRY
1792
4 1 2 3 4
4 5 6 7 8
4 9 10 11 12
4 13 14 15 16
4 17 18 19 20
4 21 22 23 24
4 25 26 27 28
4 29 30 31 32
4 33 34 35 36
(etc. for each surface that comprises the boundary surface)

Streamlines
The current rake of streamlines data will be output using the FieldView particle path format. This infor-
mation will include the X, Y and Z coordinates, Duration, and the current scalar. Each stream-
line’s points are sorted in time. Note: The Duration in the streamline export file is the residence
time.

Example:

FVPARTICLES 2 1
Tag Names
0
VARIABLE NAMES
2
Duration
Density (Q1)
201
1.45503 0.189872 0.215411 0 0.867428
1.46802 0.189749 0.216805 0.0433329 0.867534
1.48291 0.189568 0.21886 0.0929378 0.867516
1.49566 0.189462 0.220879 0.135466 0.867403
1.50693 0.189436 0.222858 0.173108 0.86736

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix I 529

Table of ContentsIndex

1.5153 0.18947 0.224442 0.201096 0.867307
1.52228 0.189541 0.225838 0.224464 0.867247
1.52715 0.189616 0.226851 0.240782 0.8672
1.53129 0.189698 0.227738 0.254701 0.867147
1.53471 0.189781 0.228488 0.266208 0.867094
1.53723 0.189851 0.229049 0.27467 0.867047
1.53943 0.189919 0.229547 0.282103 0.867001
1.54133 0.189984 0.229981 0.28851 0.866954
1.54308 0.190048 0.230386 0.294425 0.866903
1.54485 0.190118 0.230797 0.300389 0.866848
1.54663 0.190192 0.231215 0.306404 0.866786
1.54845 0.190273 0.231649 0.312584 0.866715
1.55032 0.19036 0.232096 0.318909 0.866639
1.55223 0.190454 0.232558 0.325379 0.866555
1.55427 0.19056 0.233059 0.332331 0.866633
1.55641 0.190679 0.233589 0.339604 0.866708
1.55865 0.19081 0.234147 0.347192 0.866776
1.56112 0.190963 0.234773 0.35561 0.86684
1.56374 0.191135 0.235446 0.364542 0.866952
1.56651 0.191326 0.236166 0.373992 0.866952

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix K 530

Table of ContentsIndex

Appendix J MAT-File Export

This export uses the MAT-File version 6 format. It is binary, uncompressed, and has a limit of 2^31
bytes per variable. It contains up to 8 variables, each one being stored as a separate single precision
array of dimension Nx1, N being the number of nodes on the exported surface. The arrays are named
X Y and Z for the coordinates, S for the current scalar, U V W for the components of the current
vector and T for the current threshold scalar. If any of these functions is undefined, the array will still
be present, but all of the data values will be NaN (not a number). Also, the variable name in the TOC
(see next paragraph) will be "None".

An additional cell array named TOC (Table of Contents) will be exported, containing the full length vari-
able names as they appear in FieldView. For unsteady datasets, the current time step and physical
time (if available) will also be exported.

Note that as opposed to the text export, the MAT-File export does not include any information to recon-
struct the polygons of the surface. Also, each node of the surface mesh will only be listed once.

Note also that exports in CSV / Mat-file formats can be used for input to Point Query... mentioned in
Working with FieldView.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 531

Table of ContentsIndex

Appendix K CSV Export

The file will begin with two lines of header:

• The first line starts with a "#" character, a common convention in CSV files for comments. If the
current dataset is unsteady, it is followed by the keyword "STEP=" and the current time step num-
ber. If physical time is defined for this dataset, it will also be exported after the keyword "TIME="

• The second line lists the content of the file. Coordinates will always be exported, followed by the
current scalar, the three components of the current vector and the current threshold scalar. If any of
these functions is undefined, the column will still be present, but the name will be "None" and all of
the data values will be NaN (not a number).

The rest of the file lists the coordinates and variables mentioned in the first line for all vertices on the
current surface. See the simplified example below.

#STEP=10,TIME=0.1
"X","Y","Z","pressure","U","V","W","temperature"
0,0,0.5,0.5,1,2,3,350.01
0,0.5,0.5,0.6,1,2,3,350.03
0.5,0.5,0.5,0.7,1,2,3,350.02
0.5,0,0.5,0.6,1,2,3,350.04
1,0.5,0.5,0.8,1,2,3,350.07
1,0,0.5,0.7,1,2,3,350.05
0,1,0.5,0.7,1,2,3,350.06
0.5,1,0.5,0.8,1,2,3,350.08
1,1,0.5,0.9,1,2,3,350.09

Note that as opposed to the text export, the CSV export does not include any information to recon-
struct the polygons of the surface. Also, each node of the surface mesh will only be listed once.

Note also that exports in CSV / Mat-file formats can be used for input to Point Query... mentioned in
Working with FieldView.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 532

Table of ContentsIndex

Appendix L Particle Path Formats

This section describes, with examples, the FieldView Particle Path formats. The ASCII file is a user
generated format that is also used by the Streamline Export and the Vortex Cores / Surface Flows
Export. This format is for steady state problems. The BINARY format is used by FieldView when tran-
sient streaklines are calculated. The BINARY format is for transient data only. The BINARY format is
not merely a binary version of the ASCII format.

The FieldView Particle Path Format describes a set of paths, with each path being made up of a
series of points. For each point along a path, an X, Y and Z location value is specified. In addition,
a number of variables may be defined at that location.

ASCII
The ASCII Particle Path format is used by the Streamline Export and the Vortex Cores / Surface Flows
Export tools and can also be used to create particle path files for import to FieldView. The ASCII Par-
ticle Path format consists of a header section describing global information about the paths followed by
‘blocks’ of data, one for each path. The following small example illustrates the general format. A line-
by-line description follows. Comments in parentheses are for illustration only and cannot be included
in the file.

Important Note: This format is for steady state streamlines only. For transient streaklines, the BINARY
format must be used.

FVPARTICLES 2 1
Tag Names
2
Inlet
Outlet
Variable Names
3
Time
Pressure
Temperature
5 (Path is 5 points long)
1 (Path has Tag=1, i.e. Inlet. Only include if using Tag

Names)
0.0 0.1 1.5 0.1 1013.0 304.321

point 1 of Rake 1)
0.1 0.3 1.5 0.2 1016.3 313.847 (X, Y, Z, Time, Pressure, Temperature for

point 2 of Rake 1)
0.2 0.5 1.5 0.3 1019.7 322.369 (X, Y, Z, Time, Pressure, Temperature for

point 3 of Rake 1)
0.4 0.9 1.5 0.4 1022.2 343.332 (X, Y, Z, Time, Pressure, Temperature for

point 4 of Rake 1)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 533

Table of ContentsIndex

0.4 0.9 1.5 0.5 1026.8 347.833 (X, Y, Z, Time, Pressure, Temperature for
point 5 of Rake 1)

6 (Path is 6 points long)
2 (Path has Tag=2, i.e. Outlet. Only include if using

Tag Names)
0.0 0.1 1.7 0.1 1013.0 304.321 (X, Y, Z, Time, Pressure, Temperature for

point 1 of Rake 2)
0.1 0.3 1.7 0.2 1017.2 315.361 (X, Y, Z, Time, Pressure, Temperature for

point 2 of Rake 2)
0.2 0.5 1.7 0.3 1021.4 324.873 (X, Y, Z, Time, Pressure, Temperature for

point 3 of Rake 2)
0.4 0.9 1.7 0.4 1024.7 345.568 (X, Y, Z, Time, Pressure, Temperature for

point 4 of Rake 2)
0.4 0.9 1.7 0.5 1027.1 350.843 (X, Y, Z, Time, Pressure, Temperature for

point 5 of Rake 2)
0.6 1.1 1.7 0.6 1033.8 353.733 (X, Y, Z, Time, Pressure, Temperature for

point 6 of Rake 2)

The above example and following description is for Version 2 1 of the ASCII format. This version
allows for, but does not require the use of Tag Names.

The first line must be the keyword and version numbers exactly as shown below:

FVPARTICLES 2 1

Next, the keywords shown below must appear, to signal the start of the tags section:

Tag Names

The next line must contain the number of tags in the file (if there are no tags, this will be the number
zero):

3

This is followed by the names of the tags (if any), one per line:

Inlet1
Inlet2
Injector

Next, the keywords shown below must appear, to signal the start of the variables section:

Variable Names

The next line must contain the number of variables in the file (if there are no variables, this will be the
number zero). The maximum number of particle path variables is 100.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 534

Table of ContentsIndex

3

This is followed by the names of the variables (if any), one per line:

Time
Pressure
Diameter

This concludes the header information for the ASCII particle path file. The rest of the particle path file
contains a block of information for each path. Each path consists of 1 or more points with an associ-
ated tag name. This block consists of the following information. There needs to be 1 block for each
path.

The first line of a path block contains the number of point (XYZ) entries for the path:

10

The next line of a path block contains the tag number for the first path. This associates the path to the
list of tag names that appears in the header section of the file.

1

Lastly, the point information for the path is given. This consists of the X, Y and Z locations as well
as the variable values at each location for the path.

0.0 0.1 1.5 0.0 1000.0 0.005 (X, Y, Z, Time, Pressure and Diameter for
point 1)

0.0 0.2 1.5 0.1 1100.0 0.004 (X, Y, Z, Time, Pressure and Diameter for
point 2)

...
0.0 1.1 1.5 0.2 1300.0 0.001 (X, Y, Z, Time, Pressure and Diameter for

point 10)

If there is more than one path, the next line would contain the number of point entries and tag number
for path 2, followed by the X, Y, Z and variable values for that path. There is no limit on the number
of paths that may be included in a single FieldView Particle Path file. The maximum path length (in
points) is 4000.

Note: If Time is one of the variables, the time value must increase at each point. If one or
more values for time is the same, only the first particle position at that time value is used. If
any one of the time values is less than the preceding one, all particles are rejected and an
error pop-up is shown.

How do I format the ASCII Particle Path file if I do not want to use Tag Names?
In this case, the format will show that there are zero (0) Tag Names. In addition, there is no tag num-
ber after the point entry field at the start of each block. See the example below.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 535

Table of ContentsIndex

FVPARTICLES 2 1
Tag Names
0
Variable Names
3
Time
Pressure
Temperature
5 (Path is 5 points long)
0.0 0.1 1.5 0.1 1013.0 304.321 (X, Y, Z, Time, Pressure, Temperature for

point 1 of Rake 1)
0.1 0.3 1.5 0.2 1016.3 313.847 (X, Y, Z, Time, Pressure, Temperature for

point 2 of Rake 1)
0.2 0.5 1.5 0.3 1019.7 322.369 (X, Y, Z, Time, Pressure, Temperature for

point 3 of Rake 1)
0.4 0.9 1.5 0.4 1022.2 343.332 (X, Y, Z, Time, Pressure, Temperature for

point 4 of Rake 1)
0.4 0.9 1.5 0.5 1026.8 347.833 (X, Y, Z, Time, Pressure, Temperature for

point 5 of Rake 1)
6 (Path is 6 points long)
0.0 0.1 1.7 0.1 1013.0 304.321 (X, Y, Z, Time, Pressure, Temperature for

point 1 of Rake 2)
0.1 0.3 1.7 0.2 1017.2 315.361 (X, Y, Z, Time, Pressure, Temperature for

point 2 of Rake 2)
0.2 0.5 1.7 0.3 1021.4 324.873 (X, Y, Z, Time, Pressure, Temperature for

point 3 of Rake 2)
0.4 0.9 1.7 0.4 1024.7 345.568 (X, Y, Z, Time, Pressure, Temperature for

point 4 of Rake 2)
0.4 0.9 1.7 0.5 1027.1 350.843 (X, Y, Z, Time, Pressure, Temperature for

point 5 of Rake 2)
0.6 1.1 1.7 0.6 1033.8 353.733 (X, Y, Z, Time, Pressure, Temperature for

point 6 of Rake 2)

Can I use Particle Paths to display stationary "point data" in FieldView?
Yes. FieldView’s Particle Path import format can be used to read in point data such as experimental
data which can then be displayed as stationary particles. These particles can then be colored with the
current scalar, for example, to show differences between the experimental data and the solver data
which has been read into FieldView. The only useful DISPLAY TYPE is Spheres, Dots or Poly-
spheres. For these DISPLAY TYPES, you must define one path for each data point. This path has
only a single XYZ location. It does not need a ‘start’ and an ‘end’ point. You will need as many paths
as you have particles. The following example shows what a file might look like for importing experi-
mental data with pressure information at given locations:

FVPARTICLES 2 1
Tag Names
2

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 536

Table of ContentsIndex

Rake 1
Rake 2
Variable Names
1
Pressure
1
1
0.0 0.1 1.5 1013.0 (X, Y, Z, Pressure for point 1 of Rake 1)
1
1
0.0 0.2 1.5 1116.5 (X, Y, Z, Pressure for point 2 of Rake 1)
…
1
1
0.0 1.1 1.5 1300.0 (X, Y, Z, Pressure for point N of Rake 1)
1
2
0.0 0.1 1.5 1013.0 (X, Y, Z, Pressure for point 1 of Rake 2)
1
2
0.0 0.2 1.5 1116.5 (X, Y, Z, Pressure for point 2 of Rake 2)
…
1
2
0.0 1.1 1.5 1300.0 (X, Y, Z, Pressure for point N of Rake 2)

BINARY
The BINARY Particle Path format is used when FieldView creates a transient particle path file during
streakline creation. Binary Particle Path files can be created/read by FieldView on any platform.

Important Note: This format is for transient streaklines only. For steady state particle paths, the ASCII
format must be used.

Sample C code fragments have been included below to help with the writing of this format. Included
with the Binary FieldView-Unstructured sample code called write_binary_uns.c (which can be
found in the subdirectory /uns of the FieldView installation) is a useful subroutine for writing out
strings called fwrite_str80. In the sample codes fragments below, it is assumed that this subrou-
tine is used.

BINARY PARTICLE SET Format Description
The file header for the binary PARTICLE SET format is similar to the older binary STREAKLINE format
(described in the section after this one). The only differences are:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 537

Table of ContentsIndex

• The major version is 3 instead of 1 (version 2 is reserved for ASCII).
• No time step number or solution time is stored in the file header. The time step number will be

derived from the file name. There should be an integer time step number (or iteration number) in
front of the first ’.’ in the file name. The number of digits can vary from time step to time step.
Leading zeroes are allowed.

Example #1:
my_particles01.fvp
my_particles11.fvp
my_particles33.fvp
my_particles101.fvp
...

Example #2:
my_particles01.Nov2013.fvp
my_particles11.Nov2013.fvp
my_particles33.Nov2013.fvp
my_particles101.Nov2013.fvp
...

Within the file body, data is written out as follows:

x y z for particle 1
x y z for particle 2
..

scalar#1 for particle 1
scalar#1 for particle 2
...

scalar#2 for particle 1
scalar#2 for particle 2

 ...

The following sample C code assumes that various variables have already been defined. For exam-
ple,

#define MAJOR_VERSION 3
#define MINOR_VERSION 2
#define FV_MAGIC 0x00010203

Line Description Sample C
integer FV_MAGIC = 0x00010203 ibuf[0] = FV_MAGIC;

fwrite(ibuf,sizeof(int), (size_t)1, fp);
string "FVPARTICLES" fwrite_str80("FVPARTICLES", fp);
integer major version number (= 3) ibuf[0] = MAJOR_VERSION;

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 538

Table of ContentsIndex

fwrite(ibuf,sizeof(int), (size_t)1, fp);
integer minor version number (= 2) ibuf[0] = MINOR_VERSION;

fwrite(ibuf,sizeof(int), (size_t)1, fp);
integer reserved (= 0) ibuf[0] = 0;

fwrite(ibuf,sizeof(int), (size_t)1, fp);
integer number of variables ibuf[0] = num_vars;

fwrite(ibuf,sizeof(int), (size_t)1, fp);

(then, for each variable)
for (i = 0; i < num_vars; i++)

string variable name {fwrite_str80 (var_names[i], fp);}

integer number of particles ibuf[0] = num_part;
fwrite(ibuf,sizeof(int), (size_t)1, fp);

(then, for each particle)
for (j = 0; j < num_part; i++)

float x {fwrite(x_values[j],sizeof(float), (size_t)1,
fp);

float y fwrite(y_values[j], sizeof(float), (size_t)1,
fp);

float z fwrite(z_values[j], sizeof(float), (size_t)1,
fp);}

(then, for each particle for each variable)
for (i = 0; i < num_vars; i++)
for (j = 0; j < num_part; i++)

float value {fwrite(var_values[i][j], sizeof(float),
 (size_t)1, fp);}

where
integer: 4-byte integer value
float: 4-byte floating point value
string: 80-byte string value (unused bytes are filled with NULL characters)

The following points should be noted:

Mapping is used when the byte order matches the native byte order.

Floating-point data is stored using single-precision.

There are no reserved scalar names. The scalar name "Time" for example is not a reserved name,
and does not get used to enable any special functionality within FieldView.

Consistent with our ASCII and binary STREAKLINE formats, there is no support for vector variables
(only scalars).

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 539

Table of ContentsIndex

As scalars are written to the FVP files, a scalar written for "seed number" would be very useful to the
FieldView user, as this would provide information about the origin of a given particle. It would also be
useful to provide a constant, different for each emitting surface, which would allow users to identify
particles originating from a given inlet, for instance.

BINARY STREAKLINE Format Description
The file header for the binary STREAKLINE format is similar to the binary PARTICLE SET format. The
only differences are:

• The major version is 1 instead of 3 (version 2 is reserved for ASCII).
• The time step and the solution time for every time step are stored in the file.

The following sample C code assumes that various variables have already been defined. For exam-
ple,

#define MAJOR_VERSION 1.1
#define MINOR_VERSION 1
#define FV_MAGIC 0x00010203

Line Description Sample C
integer FV_MAGIC = 0x00010203 ibuf[0] = FV_MAGIC;

fwrite(ibuf,sizeof(int), (size_t)1, fp);
string "FVPARTICLES" fwrite_str80("FVPARTICLES", fp);
integer major version number (= 1) ibuf[0] = MAJOR_VERSION;

fwrite(ibuf,sizeof(int), (size_t)1, fp)
integer minor version number (= 1) ibuf[0] = MINOR_VERSION;

fwrite(ibuf,sizeof(int), (size_t)1, fp)
integer number of variables other ibuf[0] = num_vars;

than solution time fwrite(ibuf,sizeof(int), (size_t)1, fp)
(then, for each variable other than solution time)

string variable name for (i = 0; i < num_vars; i++)
{fwrite_str80 (var_names[i], fp)}

(then, for each time step)
integer time step number fwrite(&time_step,sizeof(int), (size_t)1, fp)
float solution time fwrite(&solution_time,sizeof(int), (size_t)1,

fp)
integer number of particles fwrite(&num_particles,sizeof(int), (size_t)1,

fp)
(then, for each particle)

integer path ID fwrite(&pathID[i],sizeof(int), (size_t)1, fp)
float x fwrite(x_values[i], sizeof(float), (size_t)1,

fp)
float y fwrite(y_values[i], sizeof(float), (size_t)1,

fp)
float z fwrite(z_values[i], sizeof(float), (size_t)1,

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix L 540

Table of ContentsIndex

fp)
(then, for each variable)

float value fwrite(var_values[i][j], sizeof(float),
(size_t)1, fp)

where
integer: 4-byte integer value
float: 4-byte floating point value
string: 80-byte string value (unused bytes are filled with NULL characters)

Note: The FV_MAGIC constant should always be written out as a 4-byte integer, and not as
a series of 4 bytes. On read in, it will be used to determine whether or not byte-swapping is
needed.

Note: Solution time must be continuously ascending.

Note: Time step number must start at 1.

Note: The Path ID identifies which path a particle belongs to. Path IDs must start at 1.

Note: The solution time of the first point in a path becomes the particle path data variable "Emission
Time" when imported into FieldView.

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix M 541

Table of ContentsIndex

Appendix M FieldView Math Fonts

The Annotation panel allows you to add annotation to your visualization. Two of the font formats avail-
able are Math Upper Case and Math Lower Case. The font mappings of these two fonts with the stan-
dard US keyboard is presented in the following table. This will ease your use of these fonts for special
characters that may be needed for your annotations.

The alpha-numeric symbols are illustrated in the following tables.

Lower case keyboard characters:

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix M 542

Table of ContentsIndex

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix N 543

Table of ContentsIndex

Appendix N NPARC/WIND Constants and Formu-
las

This appendix describes the handling of constants by the NPARC/WIND reader in FieldView as well
as the formulas available through a Formula Restart (see Chapter 5 for more information about restart
files) file.

The NPARC/WIND reader will convert the following constants associated with each grid in an NPARC/
WIND file from the SI (MKS) system of units to the English (FSS) system of units:

The added annotation ‘inf’ denotes freestream conditions. These constants, in addition to Gamma (,
ratio of specific heats, cp /cv = 1.4). FSMach (Mach number) and Re (Reynold’s number) are available
as buttons in the Function Formula Specification panel.

In addition, an NPARC/WIND Formula Restart file wind.frm can be found in fvx_and_restarts
subdirectory of the FieldView installation. This Restart file can be started interactively from the File
menu Open Restart fly-out, or on the command line by using the “-f” argument and the path to the
wind.frm file.

See Chapter 1 of the User’s Guide, for a complete description of the command line arguments.

The NPARC/WIND Formula Restart file wind.frm defines several additional flow quantities. These
are functions of the above constants and the five NPARC/WIND flow quantities that already exist for
each grid in the NPARC/WIND Results file:

The formulas for the additional flow quantities defined in the wind.frm file are defined by using
these 5 flow quantities and quantities defined with them.

Constant From MKS unit To FSS unit Description
Pinf N/M2 lbf /ft

2 freestream static pressure
Tinf K (Kelvin) R (Rankine) freestream static temperature
R J/(kg-K) ft*lbf (slug-R) gas constant

NPARC/WIND Flow Quantities
“rho, density” ()
“rho*u, x-momentum” (u)
“rho*v, y-momentum” (v)
“rho*w, z-momentum” (w)
“rho*e0, stagnation energy” (eo)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix N 544

Table of ContentsIndex

These flow quantities are defined in the following way

wind.frm Variables
Variable Designation in
FieldView

Type Symbol Units

Velocity [WIND] vector V ft/s
Pressure [WIND] scalar pcalc lbf /ft

2

Pressure (lbf/in2) [WIND] pPSI lbf /in
2 (PSI)

Temperature [WIND] T R
Cp [WIND] Cp (dimensionless)
Stagnation Pressure [WIND] p0 lbf /ft

2

Enthalpy [WIND] h ft2/s2

Entropy [WIND] s ft*lbf (slug-R)

u = u / (1)

v = v / (2)

w = w / (3)

e0 = eo/ (4)

V2/ = 0.5(u2 + v2 +w 2) (5)

V = (u) X + (v) Y +(w) Z (6)

|V| = sqrt(u2 + v2 + w2) (7)

pcalc = (- 1) (eo - V2/2) (8)

pPSI = pcalc /144.0 (9)

T = pcalc / (R) (10)

Cp = [2 / (M2)] (pcalc / Pinf - 1) (11)

a = sqrt(RT) (12)

Ml = |V| / a (13)

p0 = pcalc [1 + Ml
 2(- 1)/ 2]/(-1) (14)

h = (eo - 0.5 |V|) (15)

s = [R / (-1)] ln [(pcalc / Pinf) / (Pinf / (R Tinf))] (16)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Appendix N 545

Table of ContentsIndex

The equation (9) for pPSI follows from the simple conversion formula 1 ft2 = 144 in2. Equations (8), (10)
and (14-16) use the same formulas as the PLOT3D functions, but are dimensional and in the FSS sys-
tem of units. It can be shown that equation (11) follows from the definition of the pressure coefficient

by expressing the dynamic pressure (0.5 inf Vinf
2) in terms of the freestream pressure and the

freestream Mach number (MV/c where c is the speed of sound).

Cp (p - pinf)/ (0.5 inf Vinf
2) (17)

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents

Index

Numerics
2D Plot Controls Panel

Cylindrical coord. (Regions)112
2D Plot Format515

cylindrical515

A
Actions (keyframe)317
AcuSolve ..1
AcuSolve Direct Reader1
Animation ...316

Flipbooks309, 310, 311
Holding View305
Streamlines305
View Interpolation305

Animation Data28
anut ..44
Append5, 11, 406
Appending Datasets, same Server Pro-
cess ..12
Attribute Actions (keyframe)319
Auxiliary Seed Plane

Cylindrical coord. (Regions)112
AVUS ...1

B
Background Color339
BANFF ...1
Blade Row ..118
blades per row (regions) ..118, 122, 141
Boundary Data Only9
Boundary Surface Panel516, 517

C
C language394, 404
CFD Calculator 344, 351, 439, 460, 485,
491
CFD++ ...1
CFD-ACE ...1
CFX-4 ...517

dmp files517
fvbnd files516, 517, 518

CFX-5 ...1

Export to FV-UNS79
CFX-TASCflow2, 95
CGNS ...2, 387
chunk ...143
COBALT ...2
COBALT60 ...2
Colormap File Format509
Colormap Specification Panel509
command-line switches

-f ...262
-gamma403
-gasconstant403
-s ...262

Complete Restart 260, 262, 266, 267, 279
Computational Surface Panel ..405, 406
Constants, function103
Contours

Filled278, 513
Control Panels

Colormap Specification Panel509
Dataset Controls11

Scaling 331
Sweeping 11

Flipbook Controls Panel
Graphics Layout Size (NTSC, PAL,

D1) 300
Integration Controls Panel

Multiple Surfaces/Functions 307
Script 289
Sweep Integration 113

Transform Controls
Dataset Switching 11
Demotion 285
Detach 308, 331
Object

Region 111
Transient Data

Looping 301
Transient Data Controls Panel ..314,

404
Coordinate Surface Panel

cylindrical coord. (Regions)112
Subsetting111

CTH ..41
Current Frame (keyframe)321
Curve Length350

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents

Cutting Plane
Cylindrical coord. (Regions)112

Cylindrical coordinates (regions)
Coordinate surfaces112
Point Probe113

D
Data

FV-UNS 37, 100, 101, 103, 286, 290,
527

PLOT3D 55, 100, 394, 397, 402, 403,
404,405, 545

Merge Series 404, 405, 409, 410
Q variables 102, 397, 399, 403, 404

Transient ..6, 37, 314, 394, 397, 404,
410

DataGuide ..403
Regions111

Dataset
Appending

Same Server 12
Different Systems12
Reading multiple11

Dataset Comparison11
Dataset Controls11

Duplication
Mirroring 275
Rotation 275

Negative Scaling331
Reflection331
Scaling ..331
Sweeping308

Dataset Reflection331
Dataset Switching11
Datasets

Multiple11, 100, 262
dbx ...251
debugger ..251
Demotion ..285
Detach308, 331
Differences between Datasets107
DIRECT Readers20
dmp files ...517
dump(variable)247
DUPLICATION286

MIRROR286

NONE ...286
ROTATE287

E
Equal Length Vectors343
Experimental Data535
Export ...524

cylindrical coord. (Regions) 113, 289,
524,526, 527

Streamline55, 524, 528, 532
Export Format524

F
Face Data

FV-UNS 37, 100, 101, 103, 286, 290,
527

PLOT3D 57, 100, 101, 103, 286, 394,
400, .411, 517, 521, 522, 523,
527

PLOT3D Face Data file (fvsrf) ...400,
522,523

Surface Normals290
Feature Detection Formulas349
Feature Extraction

Separation / Reattachment532
Surface Flows532
Vortex Cores532

FENSAP ...2
FIDAP2, 27, 84

FDNEUT27
FieldView Limits512
FIELDVIEW-UNS

face data 37, 100, 101, 103, 286, 290,
527

Filled Contours278, 513
FIRE ...2
Fixed Vectors (regions)119
Flipbook Controls Panel311

Graphics Layout Size (NTSC, PAL, D1)
..300

Flipbooks309, 310, 311
Flooded Contours278, 513
Flow Science ..2
FLOW-3D

Files
FLSINP 28, 29

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents

FLOW-3D®2, 28
FLOW-3D® Animation Data2
FLOW-3D® Restart Data2
flsgrf.dat ...28
FLUENT ...2
Fluent ...36

FIDAP ...27
2D DATA 27
FDNEUT 27

Rampant-Fluent/UNS36
FLUENT Direct Reader2
FLUENT Universal2
FLUENT/UNS (and RAMPANT)2
Force ..348
FORTRAN language 354, 356, 394, 404

Files
binary 37, 403, 404
formatted 403, 404
unformatted 403, 404

Frame Number (keyframe)321
FrontFLOW ..2
Function Files 57, 394, 399, 400, 403, 404,
..........407, 408, 411, 517, 521, 522, 523
Function Formula Specification 103, 105,
106, ..341, 543

Constants103
Non-rotating vectors344
Operations105
Rotating Quantities351

Function Name File399, 404
Use Defaults403, 407, 412

Function Selection5, 100, 103
Function Specification Panel100, 103

Registers100, 102, 103, 106, 107
Scalar 100, 102, 103, 391
Threshold 100, 102, 103
Vector 6, 100, 102, 103, 341, 343

Functions
Curve Length350
Equal Length Vectors343
Force ..348
Line Integrals346
Normal Vectors347, 348
PLOT3D 55, 100, 103, 351, 391, 393,

394,402, 545
Second derivatives350

Surface Normals342
Unit Vectors341, 347, 348
Volume Integrals346

fv
-f ...262
-gamma403
-gasconstant403
-s ...262

FV_2D_to_3D9
FV_ACUSOLVE_GRAD23
FV_ARB_POLY17
FV_HOME ..355
FV_NO_FVX_RESTART258
FV_PLUGINS22
FV_TET_CONV17
fvp ..532, 536
FVREG file113, 117, 118

Blade Row section118
Dataset section118, 119, 138
Fixed Vectors section119

FV-UNS
face data 37, 100, 101, 103, 286, 290,

527
FVX

Templates257

G
-gamma ..403
gamma352, 403, 543
-gasconstant403
gasconstant403
GASP ...2
GLACIER3, 95
Graphics Layout Size (NTSC, PAL, D1)
300, ..333
GRID PROCESSING4

H
HAVOC ..3, 41
Holding View (animations)305

I
IBLANK28, 400
Import

2D Plot ..113
Improved Restarts268

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents

Increment (Inc)36, 350
Integration

Multiple Surfaces/Functions307
Integration Controls Panel

Multiple Surfaces/Functions307
Script ..289
Sweep Integration

cylindrical coord. (Regions) 113
Interpolated Actions (keyframe)318
Iso-Surface Panel

Cutting Plane
Cylindrical coord. (Regions) 112

Subsetting111

K
Keyframe Actions317

Attribute319
Interpolated318
Simple ...317

Keyframe Animation316
Graphics Layout Size (NTSC, PAL, D1)

..300
Perspective Warning328, 329

Keyframe Animation Panel320
Current Frame321
Frame Number321
Restarts326

Keyframe Restarts326
Keyframe Time Line324
Keyframe Time Line Track Selection 324
Keyframe Track Selection Panel322
Keyframe Value Specification Panel 324

L
Limits, FieldView512, 513
Line Integrals346
LINKED_SURFACE_SWEEP291
Local Parallel22
Loop ...314
Looping ..301
LS-DYNA ...3

M
Merge Series404, 405, 409, 410
Merged Transient12
Mirroring ...275

Multiple datasets11, 100, 262

N
Negative Scaling331
newlink plot3d_or_overflow-2_options 169
Non-rotating vectors344
Normal Vectors347, 348
NPARC/WIND3

O
OpenFOAM ..3
Operations, function105
Out of Range Handling109
OVERFLOW-23, 48
OVERFLOW-2 Auto-detect8
OVERFLOW-2, brk files51
OVERFLOW-2, Transient File Naming 51

P
panel 244, 279, 341, 342, 344, 346, 350,
351
Particle Path Panel534
Particle Paths

Experimental Data535
FIELDVIEW532, 534

formats
ASCII 532
BINARY 536

period (regions)118, 122, 141
Perspective328, 329
Perspective Warning328, 329
PFPR, Layout File74
PFPR, PLOT3D example74, 75
PHI ...54
PHOENICS ..54
Phoenics ..54

PHI file ..54
PHOENICS - BFC Data3
PHOENICS - non-BFC Data3
PLOT3D 55, 351, 391, 393, 394, 402, 403,
..404, 405, 545

Data
Function File 57, 394, 399, 400,

403, 404, 407, 408, 411, 517,
521, 522, 523

Function Name File 57, 394, 399,

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents

400, 404, 411, 517, 521, 522,
523

Use Defaults 403, 407, 412
Merge Series 404, 405, 409, 410
XYZ files 395, 403, 405, 406, 407

PLOT3D Auto-Detect8
PLOT3D, Transient55
Point Increment407
Point Probe Format515

cylindrical515
Point Probe Panel

cylindrical coord. (Regions)113
Output ...515
Regions111

Point Query524
POLYFLOW ...3
PostScript335, 337
PowerFlow ...3
Preference Restart274
Presentation Rendering299

Shine ..280
Specular Shading280

Presentation Rendering Highlight Size ..
299
Printing

DPI336, 337
PS335, 337
Resolution337

Python-Enabled FVX253

R
Rampant ..36
RavenCFD ...3
Refresh ..299
Region Hiearchy112
Region Transform111
Regions113, 118

Blade Row118
cylindrical coordinates ...37, 55, 112,

113, .118, 289, 515, 524, 526,
527

DataGuide111
Detach308, 331
Duplication

Rotation 116
FVREG file113, 117, 118

Blade Row section 118
Dataset section 118, 119, 138
Fixed Vectors section 119

Subsetting111
Regions, Machine Axis118
Register100, 103, 106
Rendering

Presentation Rendering299
Shine ..280
Specular Shading280

Replace5, 11, 406
Restart Data28
Restart Files

Complete260, 262, 266, 267, 279
Keyframe326
Preference274

Restarts
Formula

NPARC/WIND 543
Rotating Quantities351
Rotation, Duplication

Dataset275
Regions116

S
Sampled Datasets285
Scaling ...331
Script Language260, 274, 280, 301

Animating Streamlines305
Export ...55, 288, 301, 524, 528, 532

cylindrical coord. (Regions) 113,
289, 524, 526, 527

Holding View305
Integrate289, 307
Print PS337
SIZE ..300
View Interpolation305

SCRYU ..3
Second derivatives350
Separation / Reattachment532
set_auto_redraw()246
set_preserve_globals()247
Shine ..299
Simple Actions (keyframe)317
-size ...300
SIZE (script command)300

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents

Skip ..314
Space Bar Viewer toggle330
Specular Shading280
STAR-CCM+ ..3
stop() ..248
Streakline Export

format ...536
Streamlines & Streaklines 103, 301, 305,
406, ..516

Auxiliary Seed Plane
Cylindrical coord. (Regions) 112

Export55, 524, 528, 532
Looping301
Presentation Rendering299
Subsetting111

Structured boundary file (fvbnd) ..44, 57,
394, .400, 411, 516, 517, 518, 521, 522,
523
Subsetting

Regions111
Subvolumes110
Surface Detach308, 331
Surface Flows532
Surface Normals290, 342
Surface Plot

Export ...524
Surface-based face data

FV-UNS 37, 100, 101, 103, 286, 290,
527

PLOT3D 57, 100, 101, 103, 286, 394,
400, .411, 517, 521, 522, 523,
527

Surface Normals290
Sweep

Transient314
Sweep Integration

cylindrical coord. (Regions)113
Sweep, Dataset308

T
table 54, 95, 105, 112, 303, 354, 357, 403,
.425, 426, 434, 440, 442, 452, 454, 455,
466, ..468, 469, 478, 491, 504, 505, 506
tasc2pl3d ..95
Tetrex ...3
ThermoAnalytics3

Thresholding346, 348, 524
TIME SET MERGEDTIMES303
Toolkit ..356
Tools

Dataset Controls
Duplication

Rotation 275
Mirroring 275

Export55, 524, 528, 532
Graphics Layout Size300, 333
Keyframe Animation Panel320

Current Frame 321
Frame Number 321
Restarts 326

Transform Controls
Dataset Switching11
Demotion285
Detach308, 331
Object

Region 111
Transient Data

Looping301
Transient Data Controls Panel .314, 404

Loop ..314
Skip ...314

Transient Particle Paths
format ...536

Transient Sweep314
Translators

CFX-TASCflow95
PHOENICS54

U
Uniform Sampling (vectors)

cylindrical coord. (Regions)112
Unit Vectors341, 347, 348
Use Defaults403, 407, 412
User-Defined Data Reader356
User-Defined Functions356
USM3D ..3

V
VECTIS ..3
Vector Quantities341

Components342
Equal Length Vectors343

Tecplot, Inc. FieldView Release 2023
Reference Manual

Table of Contents

Surface Normals342
Unit Vectors341

Vectors
uniform sampling

cylindrical coordinates 112
Velocities Section (regions)119, 139
View

Presentation Rendering299
Highlight Size 299

View Interpolation (animations)305
Viewer Toolbar

Space Bar toggle330
Visualization Panels

2D Plot Controls Panel
Cylindrical coord. (Regions) 112

Boundary Surface Panel516, 517
Computational Surface Panel 405, 406
Coordinate Surface Panel111

cylindrical coord. (Regions) 112
Iso-Surface Panel

Subsetting 111
Particle Path Surface Panel 532, 534
Particle Paths

Experimental Data 535
Point Probe Panel

cylindrical coord. (Regions) 113
Output 515
Regions 111

Streamlines103, 301, 406, 516
Auxiliary Seed Plane

Cylindrical coord. (Regions) 112
Cylindrical coord. (Regions) 112
Looping 301

Streamlines & Streaklines
Subsetting 111

Volume Integrals346
Vortex Cores532

W
wheel speed (regions)118, 122, 141
WIND44, 103, 517, 518, 543

fvbnd files44, 516, 517, 518
Variables44, 103, 517, 518, 543

wind.frm543, 544

	Table of Contents
	Data Files
	Overview on Reading Data in FieldView
	GRID PROCESSING
	Function Selection
	Transient Data
	PLOT3D & OVERFLOW-2 Auto-Detect Format
	Read Boundary Data Only
	Reading more than one Dataset at a time
	Dataset Comparison for Multiple Datasets
	Merged Transient Datasets
	Appending Datasets to the same Server Process
	Data Written On Different Systems
	Support for Arbitrary Elements
	FieldView Parallel Datasets

	Direct Readers in FieldView
	Working with the Data Input Menu
	Reading Data Interactively with FieldView Parallel
	AcuSolve Direct Reader
	CGNS
	CGNS Unstructured/Hybrid Reader
	FIDAP
	FLOW-3D® Animation Data
	FLOW-3D® Restart Data
	FLOW-3D®
	ANSYS-Fluent CFF [Direct Reader]
	FLUENT cas/dat Direct Reader
	FLUENT Direct Reader
	FLUENT Universal
	FLUENT/UNS (and RAMPANT)
	FV-UNS Data Input (Native FieldView Unstructured Format)
	Ensight Reader
	Tecplot 360 Reader
	HAVOC
	LS-DYNA d3plot Direct Reader
	LS-DYNA
	NPARC/WIND
	OpenFOAM
	OVERFLOW-2
	PHOENICS - BFC Data
	PHOENICS - non-BFC Data
	PLOT3D
	SC/Tetra
	scFLOW
	SCRYU
	scSTREAM
	Surface Sampled Data
	STL
	UH3D
	ultraFluidX
	VTK
	WIND US
	XDB Import

	Partitioned File Parallel Reader (PFPR)
	Important points and limitations
	Description of Layout File Format
	Simple Layout File example
	Limitations:
	Partition File Parallel Reader Overload

	Exports to FieldView Formats
	AcuSolve
	CFD-ACE
	CFX
	COBALT
	CONVERGETM
	DROP3D
	FENSAP
	FIDAP
	Fine/Turbo
	FLUENT
	Exporting Particle Trajectories
	FUN3D
	GASP
	POLYFLOW
	STAR-CCM+
	Tetrex
	ThermoAnalytics

	Exports to FieldView Parallel Compatible Formats
	Standalone Translators to FieldView Formats
	BANFF
	CFD++
	CFX-TASCflow
	COBALT60
	PowerFlow
	FIRE
	GLACIER
	USM3D
	VECTIS

	User Defined Plugin Readers for FieldView
	AVUS

	User Defined Plugin Readers for FieldView Parallel
	Single file multigrid parallel
	Partitioned file parallel
	Unsupported features for Parallel Data Readers

	Functions
	Function Specification Panel
	Face Data and the Function Specification Panel
	Face Data and the Function Selection Panel
	Using the Functions Panel
	Face Data and the Function Formula Specification Panel
	Using the Function Formula Specification Panel
	Frequently Asked Questions
	Possible Issues
	Differences between Datasets
	Out of Range Handling

	Region Files
	Introduction
	Region Features
	Region Subsetting
	Converting Data into Cylindrical Coordinates
	Region Hierarchy
	Region Controls Panel
	Region File Naming Convention
	Transient FV-UNS and PLOT3D

	Region File Version 2 Format
	Omega Built-in Function

	Region File Examples
	Basic Coordinate Transform Example
	Mirroring
	Cylindrical Coordinate Example
	Creating Smooth Radial Surfaces
	Transforming Velocity Vectors
	Adding Regions

	Blade Row Example
	Defining Machine and Zero Theta Axis
	Adding Blade Rows
	Creating the Region File
	Rotational Duplication of Regions

	Region File Version 1 Format

	FieldView Extension Language (FVX)
	Introduction
	FVX Syntax
	Chunks
	Lexical Conventions
	Types
	Working with Tables
	Variable Scope
	Type Casting
	Operators
	Statements
	Control Structures
	Functions

	General Function Library
	Basic Functions
	String Functions
	Mathematical Functions
	Standard I/O Functions
	System Facilities Functions

	CFD Open Post-Processing Functions
	CFD Data I/O
	Creation and Modification of Post-Processing Objects
	FVX Show Min Max Annotation
	FVX Legends
	FVX Support to Return Object Handles
	Geometric Color and Scalar Colormap Specification
	Vector Options
	Annotation
	Quantify and Query
	Surface to Surface Sampling for Dataset Comparison
	Transient Data Handling
	Graphing
	GUI Functions
	Other Functions
	Dynamic Clipping
	FVX View Controls
	FVX Debugger

	Access to FVX Programs from the Tools Menu
	Python-Enabled FVX
	Support for Tkinter

	FVX Learning Tools
	FVX Tutorial Scripts
	FVX Templates
	Guide FVX saved with Restarts

	Restart Files and Script Language
	Restart Files Menu
	File Naming Convention
	Automatic Restart
	Restart Flexibility
	Restart saved on Exit from FieldView

	Restart Files Operation
	Complete Restart
	Complete, Current Window...
	Complete Restart, No Data Read
	Current Dataset Restart
	Multi-Window Layout...
	Layout Restart Files
	Preference Restart
	Script Restart
	Formula Restart
	Data File Input
	Computational Surface
	Iso-Surface
	Streamlines
	Particle Paths
	Annotation
	View (World)
	Colormap Specification
	Surface Plot
	Boundary Surface
	Vortex Cores / Surface Flows
	Coordinate Surface
	2D Plots Restart
	Point Probe Input
	Presentation Render
	Clip Groups

	FieldView Script Language Commands
	3DPDF_WRITE
	ALIGN
	ANIMATE
	ANTIALIAS
	AXIS_MARKER
	BACKGROUND
	CENTER
	DATASET_SAMPLING
	DEMOTION
	EXIT
	EXPORT
	FIT
	INTEGRATE
	INTERPOLATE
	KEYFRAME
	LIGHTINGVALUES
	LINKED_SURFACE_SWEEP
	MAXIMIZE
	OUTLINE
	PANELS
	PAUSE
	PERSPECTIVE
	PLOT
	PLOT_SIZE
	PRESENTATION
	PRINT <GRAPHICS|WINDOW> <BMP|JPEG|PNG|TIFF|EMF> [filename]
	PROBE
	RAISE
	RECORD
	RESET
	RESTART
	SAVE
	SELECT
	SHINE
	SHINEVALUES
	SIZE
	SLEEP
	SPIN
	STEP
	UNSTEP
	SWEEP
	SWEEP DATASET
	SWEEP TIME
	SYSTEM
	TIME
	TIMING
	WRITE
	XDB_WRITE
	XDB_ENABLE

	Sample Scripts
	Changing the View in an Animation
	Holding View (pausing)
	Animating Streamlines During View Interpolation
	Animating Streaklines For Transient Data
	Integrating Multiple Surfaces
	Integrating Multiple Functions
	Automating the creation of a Sampled Dataset

	Animation
	Introduction
	Flipbook Animation
	Building a Flipbook Animation
	Control and Playback of Animations
	Output Formats
	Examples

	Keyframe Animation
	Keyframe Actions
	Keyframe Animation Panel
	Error Conditions
	Perspective and Mouse Controls
	Surface and Region Detach

	Printing and Saving Images
	Introduction
	Printing and Saving Images
	FieldView Pixel Resolution
	Possible Problems
	Error Conditions

	Advanced Numerical Functions
	Vector Quantities
	Unit Vectors
	Surface Unit Normals
	Create a Vector from a Scalar
	Extract a Component of a Vector
	Equal Length Vectors for Two Datasets
	Non-Rotating Velocities using Rotating Quantities

	Integral Quantities
	Line Integrals
	Volume Integrals
	Integrated Force

	Built-In CFD Functions
	Miscellaneous Quantities
	Curve Lengths in Structured Geometries
	Second Derivatives
	Rotating Quantities

	Building FieldView Plugins
	Adding User-Defined Functions
	Adding User-Defined Data Readers
	Enabling the Passing of Constants to GUI Buttons
	Writing a User-Defined Reader
	Transient User-Defined Reader
	Support for Cartesian Grids

	Using User-Defined Plugins with a FieldView Server
	Frequently Asked Questions

	Writing and using Parallel User-Defined Data Readers
	Grid-Parallel Data Readers
	Partitioned-File Parallel Data Readers
	Features Unsupported in Parallel Data Readers

	Appendix A Built-In Functions
	Geometric Functions
	Scalar Functions Available with PLOT3D Q Files
	Vector Functions Available with PLOT3D Q Files

	Appendix B PLOT3D Formats
	Introduction
	Face Data and PLOT3D Format

	Grid XYZ Files
	Solution Q Files
	Function Files
	Face Data and Function Files
	PLOT3D
	PLOT3D Constants
	Using the PLOT3D Data File Input Panel
	Grid File Input
	Using the Grid File Input Panel
	Function File and Function Name File Input
	Merge Series File Selection

	Appendix C Function File Name Format
	File Naming Convention
	File Format
	Face Data and Function Name Files
	Error Conditions

	Appendix D Unstructured Grid Format
	General Remarks on Unstructured Data Format
	Introductory note
	Supported Element Types
	Standard 3D element types
	Arbitrary Polyhedron Cells
	Arbitrary Polygon Boundary Faces

	FieldView Compliance for Unstructured Data
	Binary Format
	General Remarks on Binary Format
	Split Binary Format
	Grid File in Split Binary Format
	Results File in Split Binary Format
	Combined (Grid & Results) Binary Format

	Unformatted (FORTRAN 77) Format
	Split Unformatted (FORTRAN 77) Format
	Grid File in Split Unformatted (FORTRAN 77) Format
	Results File in Split Unformatted (FORTRAN 77) Format
	Combined (Grid & Results) Unformatted (FORTRAN 77) Format

	ASCII Format
	Split ASCII Format
	Grid File in Split ASCII Format
	Results File in Split ASCII Format
	Combined (Grid & Results) ASCII Format

	Unstructured Data Input panel
	Transient Data

	Creating FV-UNS files with FORTRAN 77 and C for different OS
	ASCII FV-UNS files
	Binary FV-UNS files
	UNFORMATTED FV-UNS files

	2D FV-UNS FILES

	Appendix E Colormap File Format
	File Naming Convention
	Limitations:

	Appendix F FieldView Limits
	Per Session
	Per Dataset
	Per Grid
	By Object
	Legends
	Surfaces
	Streamlines
	Annotation
	2D Plots
	Arbitrary Polyhedra

	Appendix G 2D Plot Format
	Appendix H Structured Boundary Files
	Transient PLOT3D
	Face Data and Surface Normal Information
	CFX-4
	NPARC/WIND and WIND US
	Create Wall Bnd File
	Create Exterior Bnd File
	File Format
	Face Data for PLOT3D Data
	Face Data and Function Name Files

	Appendix I Plain Text Export Format
	Computational Surfaces
	Coordinate Surfaces
	Iso-Surfaces
	Boundary Surfaces
	Streamlines

	Appendix J MAT-File Export
	Appendix K CSV Export
	Appendix L Particle Path Formats
	ASCII
	BINARY
	BINARY PARTICLE SET Format Description
	BINARY STREAKLINE Format Description

	Appendix M FieldView Math Fonts
	Appendix N NPARC/WIND Constants and Formulas
	Index

